Modal Logic

• Modal operator operates on formulas (sentences in a logic)
• Can be used for expressing belief
 - So system can reason about what a person m believes
 B_m(raining)
 B_m(raining \rightarrow wet)
 - What should we be able to conclude?
• Can be used for expressing wants (user m’s goals)
 Want_m(cleandishes)
 cleandishes \rightarrow cleaningthem
• Can be used for expressing possibility
 - System can reason about what is possible
 possibly(raining)
 raining \rightarrow wet
Semantics

- Possible Worlds
 - Each world is like an interpretation
 + full assignment specifying everything as either true or false
 - Unlike an interpretation, can have multiple worlds with the same truths
- But there is structure between the worlds
 - accessibility relation between worlds $w_i R w_j$
 - $B \phi$ is true in world w if ϕ is true in all worlds w' such that $w R w'$
 + m is actually in world w but might not know which world they are in
Comparison to Datalog/FOPC

• Semantics of FOPC can be thought of as possible worlds
 - Intended interpretation is w_0
 - All models of the KB w' are accessible from w_0: w_0Rw'
 + Including the intended interpretation: w_0Rw_0

• For modal logic
 - There is a real world w_0 that the agent knows it is in (assumed to have complete knowledge)
 - Accessiblity relation is not just from the initial world w_0
 + Will allow us to model nested modal operators: $bel(bel(raining))$
 - Might not include w_0Rw_0
 + Agents might have incorrect beliefs
 - Worlds (interpretation) can be repeated, but with different accessibility relations
Overview

⇒ Omnipotent
• Model Operator Axioms
• Syntactic Proofs
• Constants and Quantifiers
Epistemic Necessitation

• Does the agent know all necessary truths?

• Example:
 - DeMorgan’s law is always true (due to semantics of \(\land \), \(\lor \), and \(\neg \))
 \[
 \neg(\phi \land \psi) \leftrightarrow (\neg\phi \lor \neg\psi)
 \]
 - So it is true in every world
 + So it is true in every accessible world from any world
 - So \(B(\neg(\phi \land \psi) \leftrightarrow (\neg\phi \lor \neg\psi)) \) \((\phi \text{ and } \psi \text{ are variables over formulas}) \)
 - Possible worlds semantics is forcing us to make all tautologies true of modal operators

• Can be written as: If \(\vdash \phi \) then \(\vdash B\phi \)
 - This is not the same as \(\phi \rightarrow B\phi \)
 + That is saying that the agent believes everything that is true in the world
 + If that was true, modal operator would not be very useful
Distribution Axiom

- If $B\phi$ and $B(\phi \rightarrow \psi)$ does $B\phi$???

- So agents believe all of the consequences of their beliefs
 - This is forced by the possible worlds semantics
- Possible world semantics is forcing agents to believe all tautologies and logical consequences of their beliefs
 - Not entirely realistic for human agents
- This can equivalently be written as $B(\phi \rightarrow \psi) \rightarrow (B\phi \rightarrow B\psi)$
 - Can distribute B over implication
Overview

• Omnipotent
⇒ Model Operator Axioms
• Syntactic Proofs
• Constants and Quantifiers
Properties on R

• Depending on what B is modeling, you might want R to have certain properties
 - Reflexive: for all \(w, wRw \)
 - Symmetric: if \(w_1Rw_2 \) then \(w_2Rw_1 \)
 - Transitive: if \(w_1Rw_2 \) and \(w_2Rw_3 \) then \(w_1Rw_3 \)
 - Serial: for all \(w_1 \) there exists \(w_2 \) s.t. \(w_1Rw_2 \)

• R is euclidean if R has what two properties?
Knowledge Axiom

• $B\phi \rightarrow \phi$
 - Everything that user believes is true
 - Which is why it is called the knowledge axiom
 - Not usually used for belief, but is used for knowledge

• Consider if R is reflexive:
 - wRw is true for every world
 - Means that $B\phi$ is only true if ϕ is true in the current world
 + Person’s beliefs (+ve and -ve) are subset of what is true in current world
 - So if R is reflexive than the knowledge axiom holds (not vice versa)
Positive-Introspection Axiom

• $B\phi \rightarrow B(B\phi)$
 - If a user believes something, the user believes that they believe it

• If R is transitive: if w_1Rw_2 and w_2Rw_3 then w_1Rw_3
 - Positive-Introspection Axiom holds
 - Proof?
Negative Introspection Axiom

• $\neg B\phi \rightarrow B(\neg B\phi)$
 - If you do not believe something, you believe you do not believe it

• Follows if R is euclidean
 - if $w_1 R w_2$ and $w_1 R w_3$ then $w_2 R w_3$
Different Combinations

• Axioms:
 - Epistemic Neccessitation
 - Distribution Axiom
 - Knowledge Axiom
 - Positive Introspection Axiom
 - Negative Introspection Axiom

• Can pick and choice which ones you want for your logic

<table>
<thead>
<tr>
<th>Modal Logic</th>
<th>Constraints on R</th>
<th>Axioms in Proof Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>no constraint</td>
<td>D</td>
</tr>
<tr>
<td>T</td>
<td>reflexive</td>
<td>D,K</td>
</tr>
<tr>
<td>S4</td>
<td>reflexive, transitive</td>
<td>D,K,P</td>
</tr>
<tr>
<td>S5</td>
<td>reflexive, transitive, symmetric</td>
<td>D,K,P,N</td>
</tr>
<tr>
<td>Weak S4</td>
<td>transitive</td>
<td>D,P</td>
</tr>
<tr>
<td>Weak S5</td>
<td>transitive, euclidean</td>
<td>D,P,N</td>
</tr>
</tbody>
</table>

© P. Heeman, 2020 • 12 of 22 • CS560 Class 17: Model Operator Axioms
Overview

- Omnipotent
- Model Operator Axioms
 \[\Rightarrow\] Syntactic Proofs
- Constants and Quantifiers
Example Proof

Nora believes $p \rightarrow q$
Nora does not believe q (believes $\neg q$ or has no belief about q)
Show that Nora does not believe p
Two Wise Men

The king tells two wise men that at least one of them has a white spot on his forehead. Each man can see the other’s forehead but not his own. The first wise man says “I don’t know whether I have a spot.” The second says ...
Two Wise Men

The king tells two wise men that at least one of them has a white spot on his forehead. Each man can see the other’s forehead but not his own. The first wise man says “I don’t know whether I have a spot.” The second says ...

• For \(a \) (the first wise man)
 - \(a \) knows whether \(b \) has a spot and that either \(a \) or \(b \) or both have a spot
 - if \(b \) does not have a spot, \(a \) would know this, and would hence know that \(a \) has a spot, and would answer “I know I have a spot”
 - but he didn’t, so \(a \) must know that \(b \) has a spot
Two Wise Men

The king tells two wise men that at least one of them has a white spot on his forehead. Each man can see the other’s forehead but not his own. The first wise man says “I don’t know whether I have a spot.” The second says ...

- For \(a\) (the first wise man)
 - \(a\) knows whether \(b\) has a spot and that either \(a\) or \(b\) or both have a spot
 - if \(b\) does not have a spot, \(a\) would know this, and would hence know that \(a\) has a spot, and would answer “I know I have a spot”
 - but he didn’t, so \(a\) must know that \(b\) has a spot

- For \(b\) (the second wise man)
 - knows that \(a\) knows whether \(b\) has spot and that either \(a\) or \(b\) has spot
 - \(b\) knows that if \(b\) does not have a spot, \(a\) would know this, and \(a\) would conclude that \(a\) has a spot, and \(a\) would answer “I know I have a spot”
 - but \(a\) didn’t, so \(b\) must have a spot, and \(b\) answers “I know I have a spot”
Writing the Knowledge

• Says two wise men, so let’s view this as knowledge
 - Computer will be \(b \). How does \(b \) reason?

• \(b \)'s knowledge
 - No need to put inside of a modal operator
 - either \(a \) or \(b \) has a spot (or both have a spot)
 - \(a \) has a spot

• \(b \)'s knowledge of \(a \)'s knowledge (written with \(K_a \))
 - \(a \) knows \(a \) or \(b \) has a spot (or both)
 - \(a \) knows whether \(b \) has a spot
 - \(a \) does not know whether \(a \) has a spot
 - if \(b \) has a spot, \(a \) will know it
 - if \(b \) does not have a spot, \(a \) will know it
Proving that $s(b)$

$\neg s(b) \rightarrow K_a(\neg s(b))$
given 1

$K_a(s(a) \lor s(b))$
given 2

$\neg K_a(s(a))$
given 3

$s(b) \lor K_a(\neg s(b))$
CNF of 1 4

Can we rewrite 2 as $K_a(s(a)) \lor K_a(s(b))$?
Proving that \(s(b) \)

\[
\neg s(b) \rightarrow K_a(\neg s(b)) \quad \text{given} \\
K_a(s(a) \lor s(b)) \quad \text{given} \\
\neg K_a(s(a)) \quad \text{given} \\
s(b) \lor K_a(\neg s(b)) \quad \text{CNF of 1} \\
\text{Can we rewrite 2 as } K_a(s(a)) \lor K_a(s(b))? \text{ No.} \\
K_a(\neg s(b) \rightarrow s(a)) \quad 2 \text{ Reverse CNF} \\
K_a(\neg s(b)) \rightarrow K_a(s(a)) \quad \text{Distribution Rule} \\
\neg K_a(\neg s(b)) \lor K_a(s(a)) \quad \text{CNF of 6} \\
s(b) \lor K_a(s(a)) \quad \text{Resolution 4,7} \\
s(b) \quad \text{Resolution 3,8} \\
\]
Pitfall of Syntactic Proofs

- Syntactic Proofs
 - Extra axioms
 - Converting to and from CNF
 - What do we need to make it complete?
 - Can we search effectively in this space?
Alternative: Proofs in Possible Worlds

• $B(\alpha)$ in w means α is true in all w' such that wRw'
 - Let’s use $T(\alpha, w)$ to mean α is true in w

• T and R are used in our semantics to give meaning to the modal operator

• However, could view T and R to be predicates in FOPC logic
 - Worlds could then be objects in that language
 - Translate sentences about B into R and T
 - Predicates in modal logic become functions
 - Rather than use axioms, use corresponding restriction on R
Example

\[\neg s(b) \rightarrow K_a(\neg s(b)) \]
\[\neg s(b) \rightarrow (\forall w \ R(w_0,w) \rightarrow \neg T(s(b),w)) \]
\[K_a(s(a) \lor s(b)) \]
\[\neg K_a(s(a)) \]

\[K_a(s(a) \lor s(b)) \]
\[\forall w \ R(w_0,w) \rightarrow T(s(a) \lor s(b),w) \]
Overview

• Omnipotent
• Model Operator Axioms
• Syntactic Proofs

⇒ Constants and Quantifiers
• $B_j(\text{woman(mary)})$
 - Does the system and john agree on who mary is?

• $\text{woman(mary)} \land B_j(\text{woman(mary)})$
 - Now do they agree?

• $\exists x \ B_j(\text{woman(x)})$ versus $B_j(\exists x \ \text{woman(x)})$