Review

• **Strategy 1: Strips**
 - Uses logic to reason inside of a world
 + Use theorem proving to prove preconditions of an action are true
 - Does not use logic to reason about how actions change world
 + Instead, create a new KB for the new world via the add/delete lists

• **Strategy 2: Situation Calculus**
 - View domain as having world objects in it that can be referred to
 + constant `init` refers to the initial world
 + static relations are true of all worlds
 + primitive relations are true of just some worlds
 - Action instances are also objects in the domain
 + ‘do’ function maps action and world to a new world
Overview

⇒ Situation Calculus

• Planning
Situation Calculus

• A way of referring to actions and their resulting worlds inside of a single KB

• Worlds also referred to as situations (or states)

• There are two ways to refer to a world:
 - constant init denotes the initial world
 - function do(A,S) denotes the world resulting from doing action A in world S, if it is possible to do A in S

• Worlds and actions are objects in the domain
 - So are denoted by terms in the logic (functions, constants, variables)
Example States

\[\text{init} \]

\[\text{do}(\text{move}(\text{rob},o109,o103), \text{init}) \]

\[\text{do}(\text{move}(\text{rob},o103,\text{mail}), \]
\[\quad \text{do}(\text{move}(\text{rob},o109,o103), \]
\[\quad \quad \text{init})) \]

\[\text{do}(\text{pickup}(\text{rob},k1), \]
\[\quad \text{do}(\text{move}(\text{rob},o103,\text{mail}), \]
\[\quad \quad \text{do}(\text{move}(\text{rob},o109,o103), \]
\[\quad \quad \quad \text{init})) \]
Using the Situation Terms

- Add state variable to primitive & derived predicates
- Example Atoms
 \[\text{at(rob, o109, } \text{init}) \]
 \[\text{at(rob, o103, } \text{do(move(rob, o109, o103), init))} \]
 \[\text{at(k1, mail, do(move(rob, o109, o103), init))} \]
Axiomatizing using Situation Calculus

• You specify what is true in the initial state using axioms with init as the situation parameter

• Static relations are defined without reference to the situation

• Derived relations are defined using clauses with a variable in the situation argument

• Primitive relations are axiomatized by specifying what is true in situation \(do(A,S) \) in terms of what holds in situation \(S \)
Initial Situation

• Static Facts
 \textit{between}(door1,o103,lab2).
 \textit{opens}(k1,door1).
 \textit{robot}(rob).
 ...

• Derived Relations
 \textit{adjacent}(Pos1,Pos2,S) \iff \textit{nodoorbetween}(Pos1,Pos2)
 \textit{adjacent}(Pos1,Pos2,S) \iff \textit{doorbetween}(Door,Pos1,Pos2) \land \textit{unlocked}(Door,S)

• Primaive Relations of Initial Situde
 \textit{sitting_at}(rob,o109,int).
 \textit{sitting_at}(parcel,storage,init).
 \textit{sitting_at}(k1,mail,init).
When are actions possible?

• Need the equivalent of the precondition list of Strips

• $\text{poss}(A,S)$ is true if action A is possible in state S

\begin{align*}
\text{poss}(\text{putdown}(Ag,Obj),S) & \leftarrow \\
& \text{carrying}(Ag,Obj,S)
\end{align*}

\begin{align*}
\text{poss}(\text{move}(Ag,Pos1,Pos2),S) & \leftarrow \\
& \text{robot}(Ag) \land \\
& \text{adjacent}(Pos1,Pos2,S) \land \\
& \text{sitting_at}(Ag,Pos1,S)
\end{align*}

• Need to do this for each action
Axiomatizing Primitive Relations

• Example: Unlocking the door makes the door unlocked

\[\text{unlocked}(Door, \text{do}(\text{unlock}(Ag, Door), S)) \leftarrow \text{poss}(\text{unlock}(Ag, Door), S)\]

Same as: \[\text{unlocked}(Door, \text{NewS}) \leftarrow \text{\text{NewS}} = \text{do}(\text{unlock}(Ag, Door), \text{PrevS}) \]
\[\text{poss}(\text{unlock}(Ag, Door), \text{PrevS})\]

• Frame Axiom:
 + Captures under what circumstances a predicate remains true
 + For unlock, there is no action that locks at door
 + So, if door was unlocked in previous state, it will continue to be true

\[\text{unlocked}(Door, \text{do}(A, S)) \leftarrow \text{unlocked}(Door, S) \land \text{poss}(A, S)\]
Example: Axiomatizing ‘Carrying’

• Picking up an object causes it to be carried

\[
carrying(Ag, Obj, do(pickup(Ag, Obj), S)) \leftarrow poss(pickup(Ag, Obj), S)
\]

• Frame Axiom: The object is being carried if it was being carried before unless the action was to put down the object

\[
carrying(Ag, Obj, do(A, S)) \leftarrow carrying(Ag, Obj, S) \land poss(A, S) \land A \neq putdown(Ag, Obj)
\]
More General Frame Axioms

• The only actions that undo sitting_at for object Obj is when Obj is an agent and moves somewhere or when someone is picking up Obj

\[
sitting_at(Obj, Pos, do(A,S)) \leftarrow
\text{poss}(A,S) \land
sitting_at(Obj, Pos, S) \land
\forall \ Pos1 \ A \neq \text{move}(Obj, Pos, Pos1) \land
\forall \ Ag \ A \neq \text{pickup}(Ag, Obj)
\]

• Last two lines are not datalog
 - Is there a way that we can use datalog theorem prover anyways?

• Last line is equivalent to: \(\neg \exists \ Ag \ A = \text{pickup}(Ag, Obj) \)
Dealing with the Quantifier

\[
\text{sitting_at}(\text{Obj}, \text{Pos}, \text{do}(A, S)) \leftarrow \\
\text{poss}(A, S) \land \\
\text{sitting_at}(\text{Obj}, \text{Pos}, S) \land \\
\neg \exists \text{Pos1} \ A = \text{move}(\text{Obj}, \text{Pos}, \text{Pos1}) \land \\
\neg \exists \text{Ag} \ A = \text{pickup}(\text{Ag}, \text{Obj})
\]

- This is how Prolog's negation as failure works (no delaying)
 - It fails if it finds any variable instantiation that succeeds

\[
\text{sitting_at}(\text{Obj}, \text{Pos}, \text{do}(A, S)) \leftarrow \\
\text{poss}(A, S) \land \\
\text{sitting_at}(\text{Obj}, \text{Pos}, S) \land \\
\sim A = \text{move}(\text{Obj}, \text{Pos}, \text{Pos1}) \land \\
\sim A = \text{pickup}(\text{Ag}, \text{Obj})
\]
Overview

• Situation Calculus

⇒ Planning
Situation Semantics and Theorem Proving

• What kinds of queries can we make?
 - ? poss(putdown(rob,key),init)
 - ? poss(Action,init)
 - ? poss(Action,do(move(rob,o109,o103),init))
 - ? carrying(rob,k1,init)
 - ? carrying(rob,k1,do(pickup(rob,k1),
 do(move(rob,o103,mail),
 do(move(rob,o109,o103),init))))
Resolution Planning

• If you want a plan to achieve Rob holding the key k_1 and being at o_{103}, you can issue the query

 $\text{?carrying(rob,k1,S) } \land \text{ at(rob,o103,S)}$

• This has an answer

 $S = \text{do(move(rob,mail,o103),}$

 $\text{do(pickup(rob,k1),}$

 $\text{do(move(rob,o103,mail),}$

 $\text{do(move(rob,o109,o103),init))))}$

• What strategy should you use to find a solution?
Planning as Resolution

• Could use a top-down depth-first theorem prover
 - You can virtually always use a frame axiom so that the search space is largely unconstrained by the goal

• Could do a top-down breadth-first theorem prover or another search strategy that is guaranteed to find a solution

• Strategy is called backward-chaining, as you start from the goal and work back towards the initial state
Situation Semantics Forward Planner

• Similar to STRIPS Forward Planner

• Put init in frontier

• Loop
 - Take out top world (e.g., \(do(move(rob,01,02),...) \)) from frontier
 - Figure out all possible actions using poss relation
 + This will tell you the neighboring worlds
 - For each possible action \(A \)
 + Append resulting world (e.g., \(do(A,do(move(rob,01,02),...)) \)) to frontier
Situation Semantics Forward Planner (Alternate)

• Similar to previous one but
 - Each time you create a new state, create a name for it (s1, s2, s3, etc)
 - Assert all of the derived facts about it into the KB
 - Works easier with ‘holds’ notation

Put init in frontier
While frontier is not empty
 Take out top world (e.g., si) from frontier
 For each possible action A (determined from poss relation)
 Create a new world sj
 Append sj to frontier
 for each Fact s.t. holds(Fact,do(si,A))
 add holds(Fact,sj) to KB

• How do the two versions compare?