Overview

⇒ Assumption-Based Reasoning

• Abduction

• Default Reasoning
Deduction versus Assumption-Based Reasoning

• Deduction
 - Where you have a KB of facts
 - Conclude things that must be true

• Complete Knowledge Assumption
 - Starting to veer away from deduction
 - Assume that everything you do not know to be true is false

• Assumption-Based Reasoning
 - Specify what things might be true given a set of facts
 - And perhaps some other assumptions
 - Want assumptions to be consistent
Example: Water World

- I have a sensor that tells if my flower-beds are wet
- But, I want to know why they are wet
- Facts about the world (a simplification)
 - cloudy ← rained
 - wet ← rained
 - wet ← watered
 - false ← cloudy ∧ sunny
 - false ← watered ∧ cloudy
- Things that I am prepared to assume
 - rained
 - cloudy
 - watered
 - sunny
- What might be true of the world?
- What might cause wet to be true?
The Assumption-based Framework

Defined in terms of two sets of formulae:

• F is called the facts
 - Assume that they are Horn clauses

• H is called the possible hypotheses or assumables
 - Thing that we might want to consider as being true
 - Ground instances of the assumables can be assumed if consistent with F
Making Assumptions

• D is a *scenario* of $<F,H>$
 - If D is a set of ground instances of elements of H
 - And $F \cup D$ is satisfiable
 - In other words, it has a model
 - In other words, $F \cup D \not\models false$

• In other words, be careful what you put in D
 - Some subsets of ground instances of H will not work

• What are the scenarios of water world?
Explanations

• D is an explanation of g from $<F,H>$
 - If D is a scenario of $<F,H>$
 + So $F \cup D$ is satisfiable
 - And $F \cup D \models g$

• D is a minimal explanation of g from $<F,H>$
 - No strict subset of D is also an explanation

• Want a minimal explanation as it indicates the smallest number of assumptions we need to make to prove g
 - Prefer ‘watered’ over ‘watered and sunny’
 - For medical diagnosis, prefer single disease rather than multiple

• What are the
 - explanations of wet?
 - minimal explanations of wet?
Extensions

• E is an *extension* of $<F,H>$
 - D is a scenario of H that is maximal
 + D is not a strict subset of any other scenario of H
 + Opposite of explanation. Want it as big as possible
 - E is the logical closure of $F \cup D$
 + E includes $F \cup D$ and everything that can be derived from that
 + Definition in textbook is difficult to parse, but this is what they mean

• Each extension is like a different world
 - that includes F
 - and includes as much of H as is consistent
 - and includes all consequences
 - but no other things
Extensions Continued

• Anything that can be explained will be in an extension
 - But unlike an extension, hard to pin down why it might be true

• There can be a number of different extensions
 - How do the extensions differ?
 - If \(g \) is in extension \(E_1 \) but not in \(E_2 \), \(\neg g \) must be in \(E_2 \)

• What are the extensions of water world?
Recap

• F: facts about the world, and H assumables

• D is a scenario of $<F,H>$
 - D is a set of ground instances of elements of H
 - $F \cup H$ is satisfiable

• Scenario D is an explanation of g if $F \cup D \models g$
 - D is minimum explanation if no strict subset of D also explanation

• Scenario D is a maximal scenario
 - ... if no strict subset of D is also scenario of $<F,H>$
 - Logical closure of $F \cup D$ is called an extension
Default Reasoning and Abduction

- Two applications of using the assumption-based framework:
 - Abduction
 - Where \(g \) is given, and we are interested in explaining it
 wet: so either it rained or we watered
 - Default reasoning
 - Where the truth of \(g \) is unknown and is to be determined
 + Finding an explanation for \(g \) is evidence it is true
 + Finding an explanation for \(\neg g \) is evidence it is not true
 - Example: if tweety is a bird, can it fly?
Overview

- Assumption-Based Reasoning

⇒ Abduction

- Default Reasoning
Abduction

• You observe something being true in the world, and want to conjecture what may have produced this observation

• Given g, facts F about world, and assumables H, find a minimal explanation D
 - D is a ground subset of H and $F \cup D$ is satisfiable: scenario
 - D is as small as possible (occam’s razer)
 - $F \cup D \models g$

• Can use this for expert systems, say for diagnosing a disease
Example

• H
 \[\text{interestedin}(Ag,\text{Topic}) \]

• F
 \[\text{about}(\text{article94},\text{ai}) \]
 \[\text{about}(\text{article94},\text{informationhighway}) \]
 \[\text{about}(\text{article34},\text{ai}) \]
 \[\text{about}(\text{article34},\text{skiing}) \]
 \[\text{selects}(Ag,\text{Art}) \leftarrow \text{about}(\text{Art},\text{Topic}) \land \text{interestedin}(Ag,\text{Topic}) \]

• $g = \text{selects}(\text{fred},\text{article94})$

• Note that H here is an atom (fact) with variables in it
 - What values should we instantiate for it?

• Minimal explanations?
Implementation 1: Bottom-up Approach

• Set D to $\{\}$
• Loop
 - Take ground instance d of something from H
 - Ensure $F \cup D \not\models d \Rightarrow F \cup D \cup \{\neg d\} \not\models false$
 + Can do this efficiently if horn, using unit resolution
 - Ensure $F \cup D \cup \{d\}$ is consistent $\Rightarrow F \cup D \cup \{d\} \not\models false$
 - Add d to D
 + Check if $F \cup D \models g \Rightarrow F \cup D \cup \{\neg g\} \models false$
 + If yes, record it, and don’t pursue this explanation further
 - Need to do this as a breadth first search
 (in order to find all possible different explanations)
• This is like a bottom-up search
 - Could take a LONG time
 - Are the explanations minimal?

© P. Heeman, 2020 14 of 25 CS560 Class 13: Abduction
Implementation 2: Top-down Approach

• Set D to $\{\}$

• Do top-down proof (breath-first)

• Allow proof algorithm to use F, D and H

• Each time you use something from H, say d
 - Ensure it is ground (or delay until it is ground)
 - Ensure $F \cup D \not\models d$
 - Ensure d is consistent with $F \cup D$
 - Add d to D

• Do breath-first search to find all different explanations
Overview

- Assumption-Based Reasoning
- Abduction

⇒ Default Reasoning
Default Reasoning

• Where the truth of g is unknown and is to be determined
 - Finding an explanation for g is evidence it is true
 - Finding an explanation for $\neg g$ is evidence it is not true
 - Do not care about the actual explanation

• Default reasoning allows information to be incorporated that is not always true, but might have exceptions
 - Like the CKA, allow things to be assumed if you cannot prove otherwise
 - But can control what things are assumable, and ensures extension is satisfiable
Tweety World

- Tweety is a bird
 - Can it fly?
 - \(\text{fly}(X) \leftarrow \text{bird}(X) \)
Tweety World

• Tweety is a bird
 - Can it fly?
 - \(fly(X) \leftarrow bird(X) \)

• What if Tweety is an ostrich
 - Need to change previous rule
 - \(fly(X) \leftarrow bird(X) \land \neg ostrich(X) \)
Tweety World

• Tweety is a bird
 - Can it fly?
 - $fly(X) \leftarrow bird(X)$

• What if Tweety is an ostrich
 - Need to change previous rule
 - $fly(X) \leftarrow bird(X) \land \neg ostrich(X)$

• What if Tweety has a broken wing
 - $fly(X) \leftarrow bird(X) \land \neg ostrich(X) \land \neg hurt(X)$
Tweety World

- Tweety is a bird
 - Can it fly?
 - $\text{fly}(X) \leftarrow \text{bird}(X)$

- What if Tweety is an ostrich
 - Need to change previous rule
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X)$

- What if Tweety has a broken wing
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X) \land \neg \text{hurt}(X)$

- What if Tweety is a baby bird
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X) \land \neg \text{hurt}(X) \land \neg \text{baby}(X)$
Classical Logic is Monotonic

- If $KB \models g$ then $KB \cup A \models g$
 - Classical logic is monotonic
 - Adding more stuff to KB does not make stuff that was true become false

- Every time we think of new exception,
 - We cannot just add a new rule
 - We have to change our KB

- Adding new rules is much better than changing rules
Default Reasoning

• When giving information, you don’t want to enumerate all of the exceptions, even if you could think of them all.

• In default reasoning, you specify general knowledge and modularly add exceptions. The general knowledge is used for cases you don’t know are exceptional.

• Default reasoning is **non-monotonic**: When you add that something is exceptional, you can’t conclude what you could before.
Defaults as Assumptions

• Default reasoning can be modeled using
 - H as normality assumptions
 - F states what follows from the assumptions

• An explanation of g gives an argument for g
Default Example

- **H**
 \[\text{flys}(X) \leftarrow \text{bird}(X) \]

- **F**
 \[\text{bird}(tweety) \]
 \[\text{bird}(X) \leftarrow \text{ostrich}(X) \]
 \[\text{false} \leftarrow \text{flys}(X) \land \text{ostrich}(X) \]
 \[\text{false} \leftarrow \text{flys}(X) \land \text{bird}(X) \land \text{hurt}(X) \]
 \[\text{false} \leftarrow \text{flys}(X) \land \text{bird}(X) \land \text{baby}(X) \]

- **D = \{ \text{flys}(tweety) \leftarrow \text{bird}(tweety) \}**

- **F \cup D** is consistent, so it is a scenario

- **F \cup D \models \text{flys}(tweety)**

- **D** is a minimal explanation of \(\text{flys}(tweety) \) from \(<F,H> \)
Contradictory Explanations

• Music World
 - I dislike most american music and I like most disco songs
 - Do I like music by Donna Summers?
 - H: \(\text{like}(X) \leftarrow \text{disco}(X) \)
 \(\text{false} \leftarrow \text{americanmusic}(X) \land \text{like}(X) \)
 - F: \(\text{disco}(\text{donnasummers}) \)
 \(\text{americanmusic}(\text{donnasummers}) \)
 \(\text{disco}(<\text{beegees}> \land \text{like}(\text{donnasummers}) \land \text{americanmusic}(\text{beegees}) \land \text{like}(\text{donnasummers}) \}

• Two different explanations
 - \(D_1 = \{ \text{like}(\text{donnasummers}) \leftarrow \text{disco}(\text{donnasummers}) \}\)
 - \(D_2 = \{ \text{false} \leftarrow \text{americanmusic}(\text{donnasummers}) \land \text{like}(\text{donnasummers}) \}\)
- Explanations D_1 and D_2 give two different answers
 + Part of two different extensions
Overriding Assumptions

- Add cancellation rule to F

 \[\text{like}(X) \leftarrow \text{americanmusic}(X) \land \text{disco}(X) \]

- This rule disallows D_2 from being consistent with F
Resolving Competing Arguments

• But what if no cancellation rule?
 - What do you do when there are multiple extensions that give different answers?

• Could require g to be in all extensions of $<F,H>$