Overview

⇒ Explicit Quantification

• Semantics

• Theorem Prover
Overview

- Predicate Calculus
 - variables
 - functions
 - negative & disjunctive
 - integrity constraints
 - quantifiers

© P. Heeman, 2020

CS560 Class 12: Explicit Quantification
Quantification

- So far, variables have been universally quantified at clause level
 \[\forall X \forall Y \forall Z \quad \text{brothers}(X, Y) \leftarrow (\text{mother}(X, Z) \land \text{mother}(Y, Z) \land \neg (X = Y)) \]

 - Earlier in course, we argued that it was the same as follows:
 \[\forall X \forall Y \quad \text{brothers}(X, Y) \leftarrow (\exists Z \quad \text{mother}(X, Z) \land \text{mother}(Y, Z) \land \neg (X = Y)) \]

 - Aside: If we assume UNA, equality is the same as unification

- But how can we capture “every boy loves a girl”
 - This means that for every boy, there exists a girl that the boy likes
 \[\forall X \quad \text{boy}(X) \rightarrow (\exists Y \quad \text{girl}(Y) \land \text{likes}(X, Y)) \]
 \[\forall X \quad (\exists Y \quad \text{girl}(Y) \land \text{likes}(X, Y)) \leftarrow \text{boy}(X) \]
 \[\forall X \exists Y \quad (\text{girl}(Y) \land \text{likes}(X, Y) \leftarrow \text{boy}(X)) \]

- Need to explicitly deal with universal and existential quantifiers
Steps

• Step 1: Syntax
 - $\forall X$ and $\exists X$ can go around any ???

• Step 2: ??

• Step 3: ??
Order of Precedence

• Brackets tell you what arguments that infix operators apply to
 \[(2\times3) + 4 = 10\]
 \[2 \times (3+4) = 24\]

• If brackets are missing, use order of precedence
 - multiplication and division before add and subtract

• Same for FOPC
 - negation
 - and or implies
 - quantifiers
Overview

• Explicit Quantification

⇒ Semantics

• Theorem Prover
Semantics of Universal Quantification

- Textbook: $\forall X w$ is true in an interpretation I iff w is true in I regardless of what object in the domain that X is mapped to
 - w probably has free variable X in it
 - value of X in w determined by variable assignment
 - instead, explicitly enumerate over all possible assignments for X
 - $I_\rho(\forall X w)$ is true iff for all $d \in D$, $I_\rho'(w)$ is true where $\rho=\rho'$ except that $\rho'(X)=d$
What does it mean to say that w is true for I?
- true if forall ρ $I\rho$ makes w true

What does it mean for $\forall X w$ to be true for I?
- true if forall ρ $I\rho$ makes $\forall X w$ true
- true if forall ρ forall $d \in D$ where ρ maps X to d then $I\rho$ makes w true
Facts about Universal Quantification

- Any expression with free variables is same as that expression but with the free variables universally quantified
 - Just making the universal quantification explicit

- Can prove that order of universals doesn’t matter:
 \(\forall X \forall Y w \) is true exactly when \(\forall Y \forall X w \) is true
Semantics of \textit{Exists}

- Textbook: $\exists Xw$ is true in an interpretation I \textbf{iff} there is some individual in the domain, say d, such that if X is mapped to d then w is true in I

- $I\rho(\exists Xw)$ is true \textbf{iff} there is a $d \in D$, such that $I\rho'(w)$ is true where $\rho=\rho'$ except that $\rho'(X)=d$
Examples

there exists a boy

there is a boy who is tall

there is a book that alice likes

there is a book that alice and tom like

there is a book that everyone loves

there is a book that every boy likes

everyone has a mother

every boy is tall
Overview

• Explicit Quantification
• Semantics

⇒ Theorem Prover
Existential Elimination

• Example: \(\exists Z \; \text{block}(Z) \)
 - We know that something is a block.
 In worst case, there isn’t even a name for it in our syntax.
 So let’s make up a new constant, say \(k \), and let \(k \) be that block.
 - Same with \(\exists Z \exists Y \; \text{hates}(Z, Y) \)

• Example: \(\forall Y \exists Z \; \text{hates}(Y, Z) \)
 - Who \(Z \) is depends on who \(Y \) is.
 Every different value of \(Y \) might have a different \(Z \).
 - If \(foe \) is a new function symbol, we can let \(foe(Y) \) be who \(Y \) hates.
 So we can infer \(\text{hates}(Y, foe(Y)) \)

• This process referred to as skolemization
 - \(foe(Y) \) is a skolem function
 - \(k \) is a skolem constant
Conversion to Clauses

- Convert each sentence into a set of clauses
 - with conjunction joining them
- Step 1: Eliminate \(\rightarrow \) by writing it in terms of \(\lor \), and \(\neg \)
- Step 2: Distribute negation so only applies to atomic sentences
 - \(\neg \neg \phi \) replaced by \(\phi \)
 - De’Morgans rules for distributing \(\neg \) over \(\lor \) and \(\land \)
 - \(\neg \forall v \phi \) replaced by \(\exists v \neg \phi \) and \(\neg \exists v \phi \) replaced by \(\forall v \neg \Phi \)
- Step 3: Rename variables so each quantifier has a unique variable
• **Step 4:** Replace existential quantifiers by skolem functions
 - Similar to existential instantiation
 - If inside of universal quantifier, its variable is considered free
 - $\exists X \, p(X)$ turns into $p(k)$ where k not yet used
 - $\forall Y \, \exists X \, p(X, Y)$ turns into $p(f(Y), Y)$ where f is a new function

• **Step 5:** Universals dropped
 - Doesn’t change meaning to drop outermost universals

• **Step 6:** Distribute \lor’s over \land’s
 - $\phi \lor (\psi \land \chi)$ replaced by $(\phi \lor \psi) \land (\phi \lor \chi)$
Example

• \(\forall X (\forall Y \ p(X, Y)) \rightarrow \neg (\forall Y \ q(X, Y) \rightarrow r(X, Y)) \)

• **Step 1:** Remove \(\rightarrow \) and \(\leftrightarrow \)
 \[\forall X \neg (\forall Y \ p(X, Y)) \vee \neg (\forall Y \ q(X, Y) \rightarrow r(X, Y)) \]
 \[\forall X \neg (\forall Y \ p(X, Y)) \vee \neg (\forall Y \ \neg q(X, Y) \vee r(X, Y)) \]

• **Step 2:** Distribute negation inwards
 \[\forall X (\exists Y \ \neg p(X, Y)) \vee \neg (\forall Y \ \neg q(X, Y) \vee r(X, Y)) \]
 \[\forall X (\exists Y \ \neg p(X, Y)) \vee (\exists Y \ \neg (\neg q(X, Y) \vee r(X, Y))) \]
 \[\forall X (\exists Y \ \neg p(X, Y)) \vee (\exists Y \ (q(X, Y) \land \neg r(X, Y))) \]

• **Step 3:** Make variable names unique for each quantifier
 \[\forall X (\exists Y \ \neg p(X, Y)) \vee (\exists Z \ (q(X, Z) \land \neg r(X, Z))) \]
Example Continued

• Step 4: Replace existential quantifiers by skolem functions
\[\forall X \neg p(X, f(X)) \lor (q(X, g(X)) \land \neg r(X, g(X))) \]

• Step 5: Universals dropped
\[\neg p(X, f(X)) \lor (q(X, g(X)) \land \neg r(X, g(X))) \]

• Step 6: Distribute \(\lor \)'s over \(\land \)'s
\[(\neg p(X, f(X)) \lor q(X, g(X)) \land (\neg p(X, f(X)) \lor \neg r(X, g(X)))) \]
A Syntactic Proof

• Example:
 Horses are faster than dogs
 There is a greyhound that is faster than every rabbit
 (This is asserting that there is a greyhound and that it is faster than every rabbit)
 Harry is a horse
 Ralph is a rabbit
 Prove Harry is faster than ralph

• What world knowledge might we need?
A Syntactic Proof

• Example:
 Horses are faster than dogs
 There is a greyhound that is faster than every rabbit
 (This is asserting that there is a greyhound and that it is faster than every rabbit)
 Harry is a horse
 Ralph is a rabbit
 Prove Harry is faster than ralph

• What world knowledge might we need?
 Greyhounds are dogs
 If X is faster than Y and Y is faster than Z then X is faster than Z
Convert to Disjunctive Normal Form

\(\forall X \forall Y \text{horse}(X) \land \text{dog}(Y) \rightarrow \text{faster}(X, Y)\)
\(\forall X \forall Y \neg(\text{horse}(X) \land \text{dog}(Y)) \lor \text{faster}(X, Y)\)
\(\neg \text{horse}(X) \lor \neg \text{dog}(Y) \lor \text{faster}(X, Y)\) \hspace{1cm} (1)

\(\exists X \text{greyhound}(X) \land (\forall Y \text{rabbit}(Y) \rightarrow \text{faster}(X, Y))\)
\(\exists X \text{greyhound}(X) \land (\forall Y \neg \text{rabbit}(Y) \lor \text{faster}(X, Y))\)
\(\text{greyhound}(\text{foe}) \land (\forall Y \neg \text{rabbit}(Y) \lor \text{faster}(\text{foe}, Y))\)
\(\text{greyhound}(\text{foe}) \land (\neg \text{rabbit}(Y) \lor \text{faster}(\text{foe}, Y))\)
\(\text{greyhound}(\text{foe}) \land \neg \text{rabbit}(Y) \lor \text{faster}(\text{foe}, Y)\) \hspace{1cm} (2)

\text{horse}(\text{harry}) \hspace{1cm} (4)
\text{rabbit}(\text{ralph}) \hspace{1cm} (5)

\(\forall X \text{greyhound}(X) \rightarrow \text{dog}(X)\)
\(\neg \text{greyhound}(X) \lor \text{dog}(X)\) \hspace{1cm} (6)

\(\forall X \forall Y \forall Z \text{faster}(X, Y) \land \text{faster}(Y, Z) \rightarrow \text{faster}(X, Z)\)
\(\forall X \forall Y \forall Z \neg(\text{faster}(X, Y) \land \text{faster}(Y, Z)) \lor \text{faster}(X, Z)\)
\(\forall X \forall Y \forall Z \neg \text{faster}(X, Y) \lor \neg \text{faster}(Y, Z) \lor \text{faster}(X, Z)\)
\(\neg \text{faster}(X, Y) \lor \neg \text{faster}(Y, Z) \lor \text{faster}(X, Z)\) \hspace{1cm} (7)
Bottom-Up Proof

\[\neg \text{horse}(X) \lor \neg \text{dog}(Y) \lor \text{faster}(X, Y) \]
\[\text{greyhound}(\text{foe}) \]
\[\neg \text{rabbit}(Y) \lor \text{faster}(\text{foe}, Y) \]
\[\text{horse}(\text{harry}) \]
\[\text{rabbit}(\text{ralph}) \]
\[\neg \text{greyhound}(X) \lor \text{dog}(X) \]
\[\neg \text{faster}(X, Y) \lor \neg \text{faster}(Y, Z) \lor \text{faster}(X, Z) \]

\[\neg \text{dog}(Y) \lor \text{faster}(\text{harry}, Y) \]
\[\neg \text{greyhound}(Y) \lor \text{faster}(\text{harry}, Y) \]
\[\text{faster}(\text{harry}, \text{foe}) \]
\[\neg \text{faster}(\text{foe}, Z) \lor \text{faster}(\text{harry}, Z) \]
\[\neg \text{rabbit}(Z) \lor \text{faster}(\text{harry}, Z) \]
\[\text{faster}(\text{harry}, \text{ralph}) \]

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
Adding on to Datalog

• Equality
 + Axioms or Paramodulation

• Unique Name Assumption
 + Assume UNA and check if objects have different names
 + Delay atoms with inequality if they are not ground

• Negative and Disjunctive Knowledge
 + CNF with any number of positive or negative literals
 + Top down: negative ancestor rule
 + Bottom up: include answer clause in KB so can find disjunctive answers

• Complete Knowledge Assumption
 + So don’t have to list negative knowledge
 + Clark Completion
 + Negation as faiylre (delay atoms with ‘not’ if not ground)

• Existential Quantification
 + Convert to CNF with skolem functions/ constants