Overview

⇒ Complete Knowledge Assumption
• Approach 1: Clark’s Completion
• Approach 2: Negation as Failure
Horne Clauses

• Allowed negative information to be expressed
• System can conclude now that
 - some things are true
 - some things are false, using the negative information
 - some things it just doesn’t know
Complete Knowledge Assumption

- Why not assume KB includes *all* positive facts, and everything else is false (similar to unique name assumption)

- Examples:
 - If I haven’t stated that two rooms are adjacent, assume that they are not
 - If I haven’t stated that Jim is Mary’s father, assume that he is not

- We don’t want to state negative facts in KB, but we want to ask queries of form $\neg p$ and use $\neg p$ in body of rule

- How can we formalize complete knowledge assumption?
Overview

• Complete Knowledge Assumption

⇒ Approach 1: Clark’s Completion

• Approach 2: Negation as Failure
Clark’s Completion

• Typically only used with Datalog

• If you have
 \[a \leftarrow b_1 \]
 ...
 \[a \leftarrow b_n \]

• You have equivalently \[a \leftarrow b_1 \lor \ldots \lor b_n \]
 - Clark’s Normal Form

• Clark’s Completion: \[a \leftrightarrow (b_1 \lor \ldots \lor b_n) \]

• If you have predicate \(p \) defined by no clauses in KB
 - the completion is \(p \rightarrow false \)
 - Which is the same as saying \(\neg p \)
Variable Case: Example

• Example
 \(\text{student}(\text{mary}) \)
 \(\text{student}(\text{john}) \)
 \(\text{student}(\text{ying}) \)

• Same as
 \(\text{student}(X) \leftarrow X = \text{mary} \)
 \(\text{student}(X) \leftarrow X = \text{john} \)
 \(\text{student}(X) \leftarrow X = \text{ying} \)

 - Note that ‘=’ sign could means equality

• Collect them all together and you get
 \(\text{student}(X) \leftarrow X = \text{mary} \lor X = \text{john} \lor X = \text{ying} \)

• Completion is
 \(\text{student}(X) \leftrightarrow X = \text{mary} \lor X = \text{john} \lor X = \text{ying} \)
Variable Case

- **Example**
 \[p(t_1,\ldots,t_n) \leftarrow B \]

- **Clark Normal form is**
 \[p(V_1,\ldots,V_n) \leftarrow V_1=t_1 \land \ldots \land V_n=t_n \land B \]

- **Clark’s Completion is**
 \[p(V_1,\ldots,V_n) \leftrightarrow V_1=t_1 \land \ldots \land V_n=t_n \land B \]
Several Clauses

• Say if you have in Clark Normal form
 \[p(V_1, \ldots, V_n) \leftarrow C_1 \]

 \[\ldots \]

 \[p(V_1, \ldots, V_n) \leftarrow C_n \]

• Clark completion of \(p \) is
 \[p(V_1, \ldots, V_n) \leftrightarrow C_1 \lor \ldots \lor C_n \]

 - Note that each \(C_i \) might have a number of conjunctions to it for its
 variable bindings

 - Before putting it together, make sure each part doesn’t have any other
 variables in common other than the \(V_i \)’s
Using Clark’s Completion

• Typically just used with Datalog
• Clark Completion though requires:
 - Disjunctive and negative knowledge
 - Usually also assume UNA or need axioms for equality
• Can be applied to just some of the predicates, not necessarily all
 - Only use rules from KB that have predicate on left hand side
 - Do not use ones in which it is on the right hand side
Example 1

parent(X,Y) ← father(X,Y)
parent(X,Y) ← mother(X,Y)
parent(joe,hunter)

Let’s clark completion on parent
Example 2

- Can be used with recursive predicates

\[
\begin{align*}
\text{lt}(0, s(X)) \\
\text{lt}(s(X), s(Y)) & \leftarrow \text{ls}(X, Y)
\end{align*}
\]
Example 2

• Can be used with recursive predicates

\text{lt}(0, s(X))
\text{lt}(s(X), s(Y)) \leftarrow \text{ls}(X, Y)

Clark Normal Form:

\text{lt}(A, B) \leftarrow A=0 \land B=s(X)
\text{lt}(A, B) \leftarrow A=s(X) \land B=s(Y) \land \text{ls}(X, Y)
\text{lt}(A, B) \leftarrow (A=0 \land B=s(X)) \lor (A=s(X) \land B=s(Y) \land \text{ls}(X, Y))
Example 2

- Can be used with recursive predicates

\[lt(0,s(X))\]
\[lt(s(X),s(Y)) \leftarrow ls(X,Y)\]

Clark Normal Form:
\[lt(A,B) \leftarrow A=0 \land B=s(X)\]
\[lt(A,B) \leftarrow A=s(X) \land B=S(Y) \land ls(X,Y)\]
\[lt(A,B) \leftarrow (A=0 \land B=s(X)) \lor (A=s(X) \land B=s(Y) \land ls(X,Y))\]

Clark Completion:
\[ls(A,B) \rightarrow (A=0 \land B=s(X)) \lor (A=s(X) \land B=s(Y) \land ls(X,Y))\]

New rule to add to KB:
\[(A=0 \land B=s(X)) \lor (A=s(X) \land B=s(Y) \land ls(X,Y)) \leftarrow ls(A,B)\]

Convert to CNF:
\[(A=0 \land B=s(X)) \lor (A=s(X) \land B=s(Y) \land ls(X,Y)) \lor \neg ls(A,B)\]

New Axioms
\[A=0 \lor A=s(X) \lor \neg ls(A,B)\]
\[A=0 \lor B=s(Y) \lor \neg ls(A,B)\]
\[A=0 \lor ls(X,Y) \lor \neg ls(A,B)\]
\[B=s(X) \lor A=s(X) \lor \neg ls(A,B)\]
\[B=s(X) \lor B=s(Y) \lor \neg ls(A,B)\]
\[B=s(X) \lor ls(X,Y) \lor \neg ls(A,B)\]
Can I prove \(\neg \text{ls}(s(0),0) \)

yes \(\lor \) ls(s(0),0)

use \(B=s(X) \lor B=s(Y) \lor \neg \text{ls}(A,B) \)

yes \(\lor 0=s(X) \lor 0=s(Y) \)

Unique Name Assumption
Overview

• Complete Knowledge Assumption
• Approach 1: Clark’s Completion
⇒ Approach 2: Negation as Failure
Negation as Failure

• A simpler way to make the CKA is to use negation as failure
 - If you cannot prove \(p \), assume it is false
 - Call this \(\sim p \)

• Add negation as failure to Datalog
 - Allow \(\sim p \) to be used in bodies of datalog clauses
 - Allow negative queries: ?\(\sim p \)
Modifying a Top-Down Reasoning Procedure

• When see $\sim p$, do recursive proof
 - If you can prove p then fail, otherwise succeed

• Example:
 \[\text{KB} = \{ p(X) \leftarrow r(X) \land \sim q(X), \ q(a), \ q(b), \ r(b), \ r(d) \} \]
 \[?p(X) \]
Variables and Delaying

- Must be careful about variables
 - Similar to inequality, need to delay till variables are instantiated
 - Prolog doesn’t do this

- Example:
 \[KB = \{ p(X) \leftarrow \sim q(X) \land r(X), \quad q(a), \quad q(b), \quad r(b), \quad r(d) \} \]
 \[?p(X) \]