Overview

⇒ Integrity Constraints
• Disjunctive & Negative Knowledge
• Resolution Rule
• Bottom-Up
• Proof by Refutation (Horne)
• Top-Down (Disj. and Neg. Knowledge)
Integrity Constraints (Chapter 7.3)

• **Integrity Constraint**
 - \(\text{false} \leftarrow a_1 \land \ldots \land a_n \)
 - Means that \(a_1 \land \ldots \land a_n \) cannot be true
 + A model of KB must make each clause true
 If it makes the body true, then ‘false’ must be true
 Which is a contradiction, so body can’t be true
 - Allows us to specify things that should not be true
 - \(\text{false} \leftarrow a \) means that \(a \) has to be false in all models

• **Horne Clause**
 - Is either a clause or an integrity constraint
 - Have either an atom or a false on left hand side
Example

- KB

 \(\text{false} \leftarrow a \land b \)

 \(a \leftarrow c \)

 \(b \leftarrow c \)

 - Can conclude that \(c \) is false in all models of KB

 - If interpretation makes \(c \) true,
 it would also make \(a \) and \(b \),
 hence would make \(a \land b \) true
 and hence would need to be make \(\text{false} \) true contradiction

 - So \(KB \models \neg c \)
Syntax and Semantics of Not

• Add \(\neg \) to syntax

• Semantics
 - If interpretation I and variable assignment \(\rho \) make \(a \) true, than it makes \(\neg a \) false, and vice versa
 - \(KB \models \neg c \)
 + If \(\neg c \) is true in all models (and with all variable assignments)
 + If \(c \) is false in all models

• For any \(d \)
 - \(KB \models d \) if \(d \) is true in all models of \(KB \)
 - \(KB \models \neg d \) if \(d \) is false in all models of \(KB \)
 - otherwise
Variations on Integrity Constraints

• $false \leftarrow a$
 - Can be written as $\neg a$
 - Or as $\neg a \leftarrow true$

• $false \leftarrow a_1 \land \ldots \land a_n$
 - Can be written as $\neg a_1 \leftarrow a_2 \land \ldots \land a_n$
 - Can be written as $\neg a_1 \lor \ldots \lor \neg a_n$

• $h \leftarrow a_1 \land \ldots \land a_n$
 - Can be written as $h \lor \neg a_1 \lor \ldots \lor \neg a_n$: conjunctive normal form
 + a conjunction (KB) of disjunctions (each clause in KB)
 - Negative signs just on atoms
 + Call atom with optional negation a literal

• Horne clause
 - When written in conjunctive normal form, at most one positive literal
Syntax and Semantics of Or

• Add \lor to syntax

• Semantics
 - If interpretation I and variable assignment ρ make a true or b true, then it makes $a \lor b$ true
Unsatisfiable

- Integrity constraints means there might not be a model of a KB
 - KB is *unsatisfiable*
 - Proof procedure should be able to derive false
 - Proof procedure should derive false iff KB is unsatisfiable

- Example KB

 \[
 a \\
 false \leftarrow a
 \]
 - Unsatisfiable
Horne Clauses

• Integrity constraints can be used for diagnostics
 - See textbook

• Also allows us a way to state some negative information
 - From electrical domain: a light can’t be both on and off
 - Should be able to prove negative facts as well

• Our top-down and bottom-up proof procedures not powerful enough
Overview

• Integrity Constraints

⇒ Disjunctive & Negative Knowledge

• Resolution Rule

• Bottom-Up

• Proof by Refutation (Horne)

• Top-Down (Disj. and Neg. Knowledge)
Disjunctive Knowledge

<table>
<thead>
<tr>
<th></th>
<th>In Conjunctive Normal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive literals</td>
</tr>
<tr>
<td>Datalog</td>
<td>Exactly 1</td>
</tr>
<tr>
<td>Horne</td>
<td>At most 1</td>
</tr>
<tr>
<td>Disjunctive & Negative</td>
<td>any number</td>
</tr>
</tbody>
</table>

- Remove restriction of Horne clauses
 - Allow disjunction in head
 - \(c \lor b \leftarrow a \)
 - Allow atoms to be negated
 - Can be converted into conjunctive normal form
 + No restrictions on how many positive literals
- In fact allow any combination with \(\land, \lor, \neg, \) and \(\leftarrow \)
Conversion to Conjunctive Normal Form

• Any expression with \land, \lor, \neg, and \leftarrow can be converted into a set of clauses in conjunctive normal form
 - no literals on right hand side of \leftarrow

• Step 1: Eliminate \leftarrow
 - $(\phi \leftarrow \psi)$ replace with $(\phi \lor \neg \psi)$

• Step 2: Distribute negationation so only applies to atoms
 - $\neg \neg \phi$ replaced with ϕ
 - $\neg (\phi \lor \psi)$ replaced with $\neg \phi \land \neg \psi$
 - $\neg (\phi \land \psi)$ replaced with $\neg \phi \lor \neg \psi$

• Step 3: Distribute \lor’s over \land’s
 - $(\phi \lor (\psi \land \chi))$ replaced by $((\phi \lor \psi) \land (\phi \lor \chi))$
Example

\(a \land (b \lor c \lor \neg (d \leftarrow e)) \)
\(a \land (b \lor c \lor \neg (d \lor e)) \)
\(a \land (b \lor c \lor \neg d \land \neg e) \)
\(a \land (b \lor c \lor \neg d \land e) \)
\(a \land (b \lor (c \lor \neg d \land e)) \)
\(a \land (b \lor (c \lor \neg d \land e)) \)
\(a \land (b \lor ((c \lor \neg d) \land (c \lor e))) \)
\(a \land ((b \lor (c \lor \neg d)) \land (b \lor (c \lor e))) \)
\(a \land (b \lor c \lor \neg d) \land (b \lor c \lor e) \)

• Result: 3 clauses

 \(a \)

 \(b \lor c \lor \neg d \)

 \(b \lor c \lor e \)
Conjunctive Normal Form

- Convert all clause into conjunctive normal form
 - Can view the literals as a set
 - Duplicates are removed
 - $a \leftarrow b \land c \land c$
 - $a \lor \neg b \lor \neg c \lor \neg c$
 - $\{a, \neg b, \neg c\}$

- Our KB is now a set of clauses, where each clause is a set of literals
• Recap: $a \lor (b \land c)$

 $(a \lor b) \land (a \lor c)$

Knowledge base: \{a \lor b, a \lor c\}

Or in set notation for disjuncts: \{\{a, b\}, \{a, c\}\}

• Now with variables:

 $\text{male}(X) \lor (\text{female}(X) \land \text{ownsdog}(X))$

 $(\text{male}(X) \lor \text{female}(X)) \land (\text{male}(X) \lor \text{ownsdog}(X))$

 - If we show the implicit quantifier

 $\forall X (\text{male}(X) \lor \text{female}(X)) \land (\text{male}(X) \lor \text{ownsdog}(X))$

 - Variables in two disjuncts seem bound together

 + Can we write it as two separate clauses, each with own X?

 - Yes, means the same thing: $\forall X \text{male}(X) \lor \text{female}(X)$

 $\forall X \text{male}(X) \lor \text{ownsdog}(X)$

 - So, just as in the non-variable case, we can write this as:

 $\{\{\text{male}(X), \text{female}(X)\}, \{\text{male}(X), \text{ownsdog}(X)\}\}$
Overview

• Integrity Constraints
• Disjunctive & Negative Knowledge

⇒ Resolution Rule

• Bottom-Up

• Proof by Refutation (Horne)

• Top-Down (Disj. and Neg. Knowledge)
Resolution Rule

- Resolution Rule
 - Resolvent A includes $\neg a$
 - Resolvent B includes b
 - a and b can be unified
 - σ is the MGU of a and b
 - Let A' be A with $\neg a$ removed, and σ applied
 - Let B' be B with b removed, and σ applied
 - Resolvent is $A' \cup B'$
Examples

• \{a, \neg b, \neg c\} with \{d, \neg c, b\}

• \{a(X), b(X, Y), \neg c(Y)\} with \{\neg b(Z, Z), c(a)\}
Overview

• Integrity Constraints
• Disjunctive & Negative Knowledge
• Resolution Rule

⇒ Bottom-Up

• Proof by Refutation (Horne)
• Top-Down (Disj. and Neg. Knowledge)
Bottom Up Proof Procedure (Section 7.5)

• Find set of ‘minimal’ truths
• Set C to KB
• Repeat:
 + Pull two clauses from C
 + Apply resolution rule if you can, giving R
 + If R contains A and ¬A, skip R, since trivally true
 + If there is an \(R' \in C \) such that \(R' \subseteq R \), skip R, since already implied
 + If there are any \(R' \in C \) such that \(R \subseteq R' \), remove \(R' \) since now implied by R

• Consequent set no longer just has atoms in it, but can have any arbitrary clause in conjunctive normal form
 - But still just has minimal truths in it
Queries to Bottom-Up Proof Procedure

- Query can be disjunction of positive or negative literals
 - For previous bottom-up procedure, was just a single positive literal
- Write query as a set of literals
 - If query contains A and $\neg A$ obviously true
 + Since one of them is true in any model, so disjunction true in all models
 - If there is a member e of C and a substitution σ
 such that $e\sigma$ is a subset of the query, then the query is true
Example 1

\[
\begin{align*}
\text{false} & \leftarrow a \land b \\
a & \leftarrow c \\
b & \leftarrow c \\
\neg c & \leftarrow \neg c
\end{align*}
\]
Example 1: Answer

- Convert KB to CNF

\[\text{false} \leftarrow a \land b \quad \neg a \lor \neg b \quad 1 \]
\[a \leftarrow c \quad a \lor \neg c \quad 2 \]
\[b \leftarrow c \quad b \lor \neg c \quad 3 \]

- KB added to consequent set \(C \)

- Look for more clauses to add to \(C \)

\[\neg b \lor \neg c \quad \text{use 1 \& 2} \quad 4 \]
\[\neg a \lor \neg c \quad \text{use 1 \& 3} \quad 5 \]
\[\neg c \quad \text{use 1 \& 5} \quad 6 \]

- \(\neg c \) allows us to prune out 2, 3, 4, 5!
- Nothing else can be done (need to keep going until nothing can be added)

- Final Consequent set \(C' \):

\[\neg a \lor \neg b \quad 1 \]
\[\neg c \quad 6 \]

- \(\neg c \) is in \(C' \), so query is true
Example II

\[(a \lor \neg b) \leftarrow c\]
\[\neg e \leftarrow \neg c\]
\[b \lor d\]
\[(a \lor b) \leftarrow d\]
\[e \leftarrow \neg a\]

\[a \lor c\]
Sound & Complete?

- Is it bottom-up strategy sound and complete?
Overview

• Integrity Constraints
• Disjunctive & Negative Knowledge
• Resolution Rule
• Bottom-Up

⇒ Proof by Refutation (Horne)

• Top-Down (Disj. and Neg. Knowledge)
Horne Clauses and Resolution (not in textbook)

• What is so special about Horne clauses?
 - More powerful than Datalog
 - **And** an efficient search solution for false

• If $KB \models \{\}$
 - Where $\{\}$ represents the empty clause, which is the same as false
 + No disjuncts in the clause means nothing can make cause true
 - Means KB has no model, which means it is inconsistent

• Why is being able to prove a KB is inconsistent useful?
 - Say we want to prove $KB \models q$, where q is a literal
 - What would happen if we add $\neg q$ into KB?
Inconsistencies

• $KB \models q$ is true if $KB \cup \{\neg q\} \models \text{false}$

• Given a KB', there is an efficient way to see if it is inconsistent
Unit Resolution

• Pick two resolvents where one of them is a unit clause
 - This is a restricted bottom-up proof procedure

• Unit Resolution always halts
 - For Horn Clauses & no functions
 - Proof
 + Let the largest clause in KB have k literals
 + Results always have fewer than k literals
 + Finite number legal literals
 + Finite number of results that Unit resolution can find

• We say it is refutation complete
Example 1

- Convert to CNF

\[
\begin{array}{lll}
false & \leftarrow & a \land b \\
\neg a \lor \neg b & \leftarrow & 1 \\
a & \leftarrow & c \\
a \lor \neg c & \leftarrow & 2 \\
b & \leftarrow & c \\
b \lor \neg c & \leftarrow & 3 \\
\neg c & \leftarrow & ? \\
c & \leftarrow & 4 \\
\end{array}
\]
Overview

• Integrity Constraints
• Disjunctive & Negative Knowledge
• Resolution Rule
• Bottom-Up
• Proof by Refutation (Horne)

⇒ Top-Down (Disj. and Neg. Knowledge)
Top Down Proof Procedure

• Start with query, which is a conjunction of literals
 - \(\text{yes} \leftarrow p_1 \land \ldots \land p_i \land \neg p_{i+1} \land \ldots \land \neg p_n \)
 - For previous top-down procedure, it was conjunction of positive literals

• Turn into disjunctive normal form
 - \(\{\text{yes}, \neg p_1, \ldots, \neg p_i, p_{i+1}, \ldots, p_n\} \)

• Use resolution rule to derive new answer clauses
 - Attack first non-yes literal in answer clause
 - Stop when just “yes” atom in answer clause
A problem

• Consider KB
 \[a \lor b \]
 \[c \leftarrow a \]
 \[c \leftarrow b \]
 into disjunctive normal form \[\Rightarrow \]
 \[c \lor \neg a \]
 \[c \lor \neg b \]

• Proof
 \[?c \]
 yes \lor \neg c
 Use \[c \lor \neg a \]
 yes \lor \neg a
 Use \[a \lor b \]
 yes \lor b
 Use \[c \lor \neg b \]
 yes \lor c
 Use \[c \lor \neg b \]

- Now what?
Negative Ancestor Rule

• Can view proof as
 + adding original answer clause KB
 + and trying to prove \(yes\) by itself
• So, should be sound to resolve answer clause with a previous answer clause
 + Didn’t need to do this for Datalog
 as it did not need this to make proof procedure complete
 + But we do need this ability here

• Proof

\[
\begin{align*}
yes \vee \neg c & \quad \text{Use } c \vee \neg a \text{ from KB} \\
yes \vee \neg a & \quad \text{Use } a \vee b \text{ from KB} \\
yes \vee b & \quad \text{Use } c \vee \neg b \text{ from KB} \\
yes \vee c & \quad \text{Use } yes \vee \neg c \text{ from prior answer clause in proof} \\
yes & \\
\end{align*}
\]
Disjunctive Answers

- KB
 \[p(X) \leftarrow q(X) \quad p(X) \lor \neg q(X) \]
 \[q(a) \lor q(b) \quad q(a) \lor q(b) \]

- Query \(p(X) \)
 - yes, with either \(X = a \) or \(X = b \), but you don’t know which
 - Very different from answer that it has two solutions,
 one with \(X = a \) and another with \(X = b \)
 + Which you would have gotten if \(q(a) \) and \(q(b) \) was replaced with \(q(a) \land q(b) \)

- We would like proof procedure to find \(yes(a) \lor yes(b) \)
 - Use Top-down proof procedure
 - Delay literals of the form \(yes(X) \)
 - Stop when just \(yes \) atoms left in answer clause
Example

- KB
 \[p(X) \leftarrow q(X) \]
 \[q(a) \lor q(b) \lor q(c) \]
 \[yes(X) \leftarrow p(X) \]
 into disjunctive normal form \[\Rightarrow \]
 \[p(X) \lor \neg q(X) \]
 \[q(a) \lor q(b) \lor q(c) \]
 \[yes(X) \lor \neg p(X) \]

- Proof
Answer Clause
\[\text{yes}(X) \lor \lnot p(X)\]
\[\text{yes}(X) \lor \lnot q(X)\]
\[\text{yes}(a) \lor q(b) \lor q(c)\]
\[\text{yes}(a) \lor p(b) \lor q(c)\]
\[\text{yes}(a) \lor \text{yes}(b) \lor q(c)\]
\[\text{yes}(a) \lor \text{yes}(b) \lor p(c)\]
\[\text{yes}(a) \lor \text{yes}(b) \lor \text{yes}(c)\]

Rule applied
\[p(X) \lor \lnot q(X)\]
\[q(a) \lor q(b) \lor q(c)\]
\[\text{yes}(X) \lor \lnot q(X)\]
\[p(X) \lor \lnot q(X)\]
\[\text{yes}(X) \lor \lnot p(X)\]
\[p(X) \lor \lnot q(X)\]
\[\text{yes}(X) \lor \lnot p(X)\]
\[\text{yes}(X) \lor \lnot p(X)\]