Overview

⇒ Lowest-Cost-First

• Best-First Search

• A* Search

• Iterative Deepening
Lowest-cost-first Search

- Sometimes there are costs associated with arcs. The cost of a path g is the sum of the costs of its arcs.
- Lowest-cost-first search finds the shortest path to a goal node.
- Frontier is implemented as a priority queue ordered by g.
 - At each stage, it selects the shortest path on the frontier.
- When arc costs are equal \Rightarrow breadth-first search.
Overview

• Lowest-Cost-First
⇒ Best-First Search
• A* Search
• Iterative Deepening
Heuristic Search

- Previous methods do not take into account goal until at goal node
- Often there is extra knowledge that can be used to guide the search: heuristics
- Use $h(n)$ as estimate of distance from node n to a goal node
- $h(n)$ is underestimate if it is less than or equal to the actual cost of the shortest path from node n to a goal
- $h(n)$ uses only readily obtainable information about a node
Best-first Search

• Idea: alway select node on the frontier with smallest h-value
• Treat the frontier as a priority queue ordered by h
• Uses space exponential in path length
Applying Best-First Search to Top-Down Proofs

How could we use this in searching through resolutions?

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 a & \leftarrow g. \\
 a & \leftarrow h. \\
 b & \leftarrow j. \\
 b & \leftarrow k. \\
 d & \leftarrow m. \\
 d & \leftarrow p. \\
 f & \leftarrow m. \\
 f & \leftarrow p. \\
 g & \leftarrow m. \\
 g & \leftarrow f. \\
 k & \leftarrow m. \\
 h & \leftarrow m. \\
 p & . \\
 ?a \land d
\end{align*}
\]
Seems Like A Good Idea But ...

- Not guaranteed to find a solution, even if one exists

- It doesn’t always find the shortest path
Example with Top-Down Theorem Proving

• Not guaranteed to find a solution, even if one exists

g ← a
 g ← d ∧ e
 a ← b
 b ← a
 d
 e
 ? g
Overview

• Lowest-Cost-First
• Best-First Search
⇒ A* Search
• Iterative Deepening
A* Search

- A* search takes path to a node and heuristic value into account
 - $g(n)$ be the cost of the path found to node n
 + From lowest-cost first search
 - $h(n)$ be the estimate of the cost from n to goal
 + From best-first search
 - Let $f(n) = g(n) + h(n)$.
 + $f(n)$ is estimate of path from start to goal via n

 \[
 \begin{array}{c}
 \text{start} \\
 g(n) \\
 \hline
 \text{actual} \\
 \rightarrow \\
 n \\
 \rightarrow \\
 \text{estimate} \\
 h(n) \\
 \hline
 \text{goal} \\
 f(n)
 \end{array}
 \]

- A* orders the frontier by $f(n)$
 + Stops when min node in frontier is goal node
A* Finds Optimal Solution

• If there is a solution, A* always finds an optimal solution
 - the first path to goal that it finds is optimal

• If ...
 - the branching factor is finite (not necessarily a finite number of nodes)
 - arc costs are bounded above zero
 (there is some $\epsilon > 0$ such that all of the arc costs are greater than ϵ)
 - $h(n)$ is an underestimate of the cost of the best path from n to a goal node and ≥ 0
Proof that if it finds a path, the path is optimal

- Let an optimal path have weight f^*
- Cells in the frontier are ordered by $g(n) + h(n)$
 - Where $g(n)$ is strictly increasing as you go down the path
 - And $h(n)$ is a lower-estimate ≥ 0 of the remaining distance
- Assume A* stops at a goal node with non-optimal path p
 - So, p was on top of the frontier
 - Since p is not optimal, $g(p) > f^*$
 - Since p ends at the goal $g(p) = f(p)$, and so $f(p) > f^*$
 - But, part of the optimal path will be in the frontier, and it will have an f-value $\leq f^*$ (since f-values never over estimate)
 - Hence, it would have been higher in the frontier than p, and so p would not have been chosen
Proof that it will find a path

- Let an optimal path have weight f_1
- Only a finite number of subpaths m have g-score $\leq f_1$
 - Because each arc has weight at least ϵ and finite branching
 - Note: subpath might not end at a goal node and g-score measures the full cost of the subpath
- So, finite number of subpaths $n \leq m$ have f-score at most f_1
 - Because f-score of subpath is greater than its g-score
- A subpath of the optimal path is always in frontier and its f-score always at most f_1
- After at most n steps, optimal path must be on top of frontier (if we haven’t stopped earlier)
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Frontier Selection</th>
<th>Halts?</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>Last node added</td>
<td>No</td>
<td>Linear</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>First node added</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>Best-first</td>
<td>Global min (h(n))</td>
<td>No</td>
<td>Exp</td>
</tr>
<tr>
<td>Lowest-cost-first</td>
<td>Global min (g(n))</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>A*</td>
<td>Global min (f(n))</td>
<td>Yes</td>
<td>Exp</td>
</tr>
</tbody>
</table>
Overview

- Lowest-Cost-First
- Best-First Search
- A* Search

⇒ Iterative Deepening
Iterative Deepening

• So far all search strategies that are guaranteed to halt use exponential space
• Idea: let’s recompute elements of the frontier rather than saving them
• Look for proofs of depth 0, then 1, then 2, then 3, etc
• You need a depth-bounded depth-first searcher
• If proof cannot be found at depth B, look for proof at depth $B + 1$
Depth-bounded depth-first search

• $dbsearch(N, D, P)$ is true if P is path of length D from N to goal

```
dbsearch(Node, 0, [Node]) :-
    is_goal(Node).

dbsearch(Node, D, NewP) :-
    D > 0,
    neighbors(Node, Neighbors),
    member(NewNode, Neighbors), ← non deterministic
    D1 is D - 1,
    dbsearch(NewNode, D1, P),
    NewP = [Node|P].
```

? dbsearch(start, 5, Path).

• A bit different from previous versions
 - Gathers up all neighbors, and then non-deterministically chooses one
 - Builds the path on the way out