Overview

⇒ Variables

• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Variables in Clauses

• Example KB

\[
\begin{align*}
\text{father}(\text{tim}, \text{steve}) & \quad \text{father}(\text{steve}, \text{john}) \\
\text{mother}(\text{pam}, \text{john}) & \quad \text{mother}(\text{susan}, \text{pam}) \\
\text{mother}(\text{helen}, \text{steve}) & \quad \text{mother}(\text{paula}, \text{tim}) \\
\text{parent}(X, Y) & \leftarrow \text{father}(X, Y) \\
\text{parent}(X, Y) & \leftarrow \text{mother}(X, Y) \\
\text{grandparent}(X, Y) & \leftarrow \text{parent}(X, Z) \land \text{parent}(Z, Y)
\end{align*}
\]

• Variables in KB useful for expressing knowledge

- Can derive \textit{parent} and \textit{grandparent} from \textit{father} and \textit{mother}, without having to specifying a lot of extra facts
- Only way to express an infinite amount of knowledge when we add function symbols
Handling Variables

• In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment

• Could do proof procedure on all ground instances of the clauses
 - Include all constants in KB and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms

• Example

 \[
 q(a).
 q(b).
 r(a).
 s(W) \leftarrow r(W).
 p(X, Y) \leftarrow q(X) \land s(Y).
 \]
Need Alternative

• Number of ground instances of clauses could be huge
• Example

\[
\text{explained}(Room,\text{Now}) \leftarrow \text{hasdetector}(Room) \\
\land \text{lastmotion}(Room,\text{Prev}) \\
\land \text{subtract}(\text{Now},\text{Prev},\text{Diff}) \\
\land \text{motionlessinroom}(Room,\text{Time}) \\
\land \text{less}(\text{Diff},\text{Time})
\]

- Has 5 variables: Room Now Prev Diff Time
- If 100 constants in KB & Query,
 will be 100*100*100*100*100 = 10^{10} instances

• Need proof procedure to directly handle clauses with variables
Substitution

- **Substitution** is a finite set of the form \{V_1/t_1, ... V_n/t_n\}
 - Each V_i is a distinct variable and each t_i is a term
 - A substitution is in *normal form* if no V_i appears in any t_j
 - \{X/Y, Y/a\} is not in normal form, but \{X/a, Y/a\} is

- **Application** of a substitution $\sigma = \{V_1/t_1, ..., V_n/t_n\}$ to expression e written $e\sigma$ is the expression with every occurrence of V_i in e replaced by the corresponding t_i
 - $e\sigma$ is an *instance* of e
 - if $e\sigma$ is ground then it is called a ground instance of e

- Instance of clause represented as original clause + substitution
Examples

- $p(a, X) \{X/c\}$
- $p(Y, c) \{Y/a\}$
- $p(a, X) \{Y/a, Z/X\}$
- $p(X, X, Y, Y, Z) \{X/Z, Y/t\}$
- $p(X, Y) \leftarrow q(a, Z, X, Y, Z) \{X/Y, Z/a\}$
Unifiers

• Substitution σ is a **unifier** of expressions e_1 and e_2 if $e_1\sigma$ is the same as $e_2\sigma$
 - Example: $\{X/a, Y/b\}$ is a unifier of $t(a, Y, c)$ and $t(X, b, c)$

• Expressions have many unifiers
 - Example: $p(X, Y)$ and $p(Z, Z)$

 - Which is best?
Most General Unifier

- **Most General Unifier (MGU)**
 - If σ is a unifier of e_1 and e_2 giving e and if for any other unifier of them, say giving e', e' is an instance of e

- If two expressions can be unified, they will have a MGU
 - Could be more than one

- Expression e is *renaming* of e' if differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other

- **Example:** $p(X, Y)$ and $p(Z, Z)$
 - $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 - $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$
Overview

• Variables

⇒ Top-down Proof Procedure with Variables

• Top-Down Reasoning Procedure

• Function Symbols

• Proof Procedures

• Top-Down Reasoning Procedure
Top-down Proof Procedure Recap

• Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[\text{yes} \leftarrow a_1 \land \ldots \land a_m \]
\[a_i \leftarrow b_1 \land \ldots \land b_p \]
\[\text{yes} \leftarrow a_1 \land \ldots \land a_{i-1} b_1 \land \ldots \land b_p a_{i+1} \land \ldots \land a_m \]
Definite Resolution with Variables

- Generalized answer clause
 - \(\text{yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m \)

- Resolution Rule
 \[
 \begin{align*}
 \text{yes}(t_1, ..., t_k) & \leftarrow a_1 \land ... \land a_m \\
 a & \leftarrow b_1 \land ... \land b_p
 \end{align*}
 \]

 \[
 \frac{(\text{yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \ b_1 \land ... \land b_p \ a_{i+1} \land ... \land a_m) \theta}{(\text{yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_i)}
 \]

- Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)
Derivation

• Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$

• γ_0 is answer clause corresponding to original query

• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose a clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

• γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k)\leftarrow$.

• Specification of a proof procedure!
Example: Robot Delivery
Robot Delivery KB

\[
\begin{align*}
 &\text{west}(r101, r103). \\
 &\text{west}(r103, r105). \\
 &\text{west}(r105, r107). \\
 &\text{west}(r107, r109). \\
 &\text{west}(r109, r111). \\
 &\text{west}(r131, r129). \\
 &\text{west}(r129, r127). \\
 &\text{west}(r127, r125). \\
 &\text{east}(E, W) \leftarrow \text{west}(W, E). \\
 &\text{next_door}(E, W) \leftarrow \text{east}(E, W). \\
 &\text{next_door}(W, E) \leftarrow \text{west}(W, E). \\
 &\text{two_east}(E, W) \leftarrow \text{east}(E, M) \land \text{east}(M, W). \\
 &?\text{two_east}(R, r107)
\end{align*}
\]
Overview

- Variables
- Top-down Proof Procedure with Variables
 ⇒ Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures
- Top-Down Reasoning Procedure
Reasoning Procedure

• (Not in chapter 2)

• Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is large so need to search carefully

• Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

• Choice points
 - **Select** an atom in body of γ_{i-1}
 - **Choose** a clause in KB whose head with unify with the chosen atom
• Always select first atom in body
 - We will have to consider each atom eventually, so just start with the first
• Choose first clause in KB whose head matches
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one
• Equivalent to Depth-first Search (but more lazily)
 - Nodes are derivations γ
 - Derivation has children of everything that can be derived from it, using different rules from the KB
Example

?two_east(_0,r107)

Answer clause corresponding

A: Use \textit{two_east}(E,W) ← east(E,M) \land east(M,W)

B: Use \textit{east}(E,W) ← \textit{west}(W,E)

C: Use \textit{west}(r101,r103)

D: Use \textit{east}(E,W) ← \textit{west}(W,E)

Nothing unifies with \textit{west}(r107,r101).

Nothing else unifies with \textit{east}(r101,r107).

C: Use \textit{west}(r103,r105)

D: Use \textit{east}(E,W) ← \textit{west}(W,E)

Nothing unifies with \textit{west}(r107,r105).

Nothing else unifies with \textit{east}(r105,r107).

E: Use \textit{west}(r107,r109)

...
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure

⇒ Function Symbols

• Proof Procedures
• Top-Down Reasoning Procedure
Function Symbols

• Predicate symbols used to assert that something is true or false
• constants refer to something in the domain
• variables refer to something in the domain
• functions also refer to something in the domain
 - constant mary could be mapped to Mary
 - function motherof(john) could also be mapped to Mary
• predicate mother(mary, john) versus function motherof(john)
 - predicate symbol captures truths about the world
 + that mary is john’s mother
 - function symbols just point to someone
Usefulness of Function Symbols

- Can talk about objects in the domain without having a constant symbol for them
- Might want to say \texttt{time(13,15)} to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60

- Keep in mind: term \textit{function} not used like it is elsewhere in CS
 - Does not capture anything about how time works
 - Capturing knowledge about time is up to predicate symbols and clauses
Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: patha and pathb
 + Define facts: \texttt{start(pathb,1)}
 \texttt{after(pathb,1,2)}
 \texttt{after(pathb,2,6)}

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)
Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: **patha** and **pathb**
 + Define facts:
 - `start(pathb,1)`
 - `after(pathb,1,2)`
 - `after(pathb,2,6)`

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)

• Can use functions to refer to a path by referring to its elements
 - Functions have a fixed number of arguements
 + So cannot use `path(1,2)` `path(1,2,6)`
 - Instead, make path one cell at a time: `p(6,p(2,p(1,null)))`
 + constant **null** represents an empty path
 + function `p(T,R)` refers to path whose top element is `T` and rest of path is `R`
Function Syntax in Datalog

- **Function symbol** is a token starting with lowercase letter
- **Term** is either a variable, constant or of the form $f(t_1, ... t_n)$
 - Where f is a function symbol and the t_i’s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause
Semantics of Function Symbols

• ϕ used to just map constants to objects in the domain
• ϕ also maps n-ary function f to $D^n \rightarrow D$
 - Notice that it is defined as mapping D^n to D, not constants n
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols
• Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
 - Example
 + Constant 0
 + Successor function $s : D \rightarrow D$
 + Can specify all of the natural numbers: $0, s(0), s(s(0)), s(s(s(0))), ...$
Defining Functions

• Any knowledge about functions must be defined by clauses
• What knowledge of numbers might we want?

• What knowledge of paths (lists) might we want?
Knowledge about Lists

• Can represent lists by
 - constant `null` represents an empty path
 - function `p(T,R)` refers to path where `T` is top element and `R` is rest of path
 - example: `p(6,p(2,p(1,null)))`

• Can we write a predicate `member(X,List)`
 - True if `X` is in list `List`
Knowledge about Lists

• Can represent lists by
 - constant **null** represents an empty path
 - function \(p(T,R) \) refers to path where \(T \) is top element and \(R \) is rest of path
 - example: \(p(6,p(2,p(1,null))) \)

• Can we write a predicate **member**(\(X, List \))
 - True if \(X \) is in list \(List \)

\[
\text{member(Top, p(Top, Rest))} \\
\text{member(X, p(Top, Rest))} ← \text{member(X, Rest)}
\]
Building Data Structures

• Can use function symbols to build other data structures

• Tree data structure:
 - A labeled tree is either a node \(\text{node}(\text{Name}, \text{LeftTree}, \text{RightTree}) \)
 or a leaf \(\text{l}(\text{Name}) \)
 - Example:
 \[
 \text{node}(n_1, \text{node}(n_2, \text{l}(l_1), \text{l}(l_2)), \text{node}(n_3, \text{l}(l_3), \text{node}(n_4, \text{l}(l_4), \text{l}(l_5))))
 \]
 \[
 \begin{array}{c}
 n_1 \\
 \text{n2} \quad \text{n3} \\
 \text{l1} \quad \text{l2} \quad \text{l3} \quad \text{n4} \\
 \text{l4} \quad \text{l5}
 \end{array}
 \]
Clauses about Trees

• \(\text{has_leaf}(L, T) \) is true if \(L \) is the label of a leaf in tree \(T \)

\[
\text{has_leaf}(L, l(L)).
\]

\[
\text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
\]

\[
\text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
\]
Clauses about Numbers

• Let $lt(X, Y)$ be true when $X < Y$
 - To define it in Datalog, need to capture facts and rules about it that capture its entire meaning
 - What is a comprehensive fact about lt that we can write?
 + Fact should have lt as its predicate
 + Should include an $s(\ldots)$
 + Make it as general as possible
 - What is a rule that we can write about lt
 + Should have lt on right and left hand side
 + Atom on right hand side should be simpler than left hand side
 + By repeatedly applying the rule, should end at fact
 + Think of this as the induction step in a proof by induction
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
⇒ Proof Procedures
• Top-Down Reasoning Procedure
Bottom-Up Proof Procedure with Variables

• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances
• But, function symbols cause infinite number of terms
• But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers
• Make sure procedure \textit{fairly} introduces ground instances
Top Down Proof Procedure

• Just have to make sure procedure that determines MGU works with function symbols

• Need to be careful about normal form
 - Substitution is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in normal form if no \(V_i \) appears in any \(t_j \)

• Most substitutions can be put into normal form
 \(\{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\} \)
 \(\{X/Z, Z/X\} \Rightarrow \{X/Z\} \)

• Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = lt(X, s(X)) \)
 \[lt(X, s(Y)) \leftarrow lt(X, Y). \]

• Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider $KB = lt(X, s(X))$

 $lt(X, s(Y)) ← lt(X, Y)$.

• Does $lt(X, X)$ follow from KB

 - Does $lt(X_1, X_1)$ unify with $lt(X, s(X))$?
 + Note we made up new variables so we don’t get confused

 - The unifier \{X_1/X, X/s(X)\} sort of makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called \textit{occurs check}
Algorithm for Finding MGU (Not in textbook)

• Take two expressions (no variables in common)
 - Compare them token for token (left to right)

• If one has a connector, other must have same one

• If one has \(n \)-ary symbol \(p \), other must as well

• For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable \(V \) and other has term \(t \), add \(V/t \) to substitution
 + \(t \) should not contain \(V \) (occurs check)
 + Apply \(V/t \) to rest of both expressions and to any terms in substitution list
 + Variable \(V \) should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant \(c \), other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures

⇒ Top-Down Reasoning Procedure
Top-Down Proof Procedure (Repeat)

• Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$

• γ_0 is answer clause corresponding to original query

• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

• γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k)\leftarrow$.
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T
 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

- Query?
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove $l4$ is a leaf of $n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))))$.
 1st clause in KB does not unify
 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l4, n(n1, l(l1), l(l2)))$. A
 1st clause in KB does not unify
 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l4, l(l1))$. B
 No clause in KB unifies. Backtrack to B.
Example Proof with Functions

- Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

\[
\text{has_leaf}(L, l(L)).
\]

\[
\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
\]

\[
\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
\]

- Prove \(l4 \) is a leaf of \(n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))) \)

\[
yes \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))).
\]

1st clause in \(KB \) does not unify

2nd clause in \(KB \) unifies \(yes \leftarrow \text{has_leaf}(l4, n(n1, l(l1), l(l2))). \)

\[
A
\]

1st clause in \(KB \) does not unify

2nd clause in \(KB \) fails

\[
B
\]

© P. Heeman, 2020 38 of 40 CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).$

 1st clause in KB does not unify
 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))).$ \hspace{1cm} A
 1st clause in KB does not unify
 2nd clause in KB fails B
 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2)).$
Example Proof with Functions

• Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

 \[\text{has_leaf}(L, l(L)). \]

 \[\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT). \]

 \[\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT). \]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))). \]

1st clause in \(KB \) does not unify

2nd clause in \(KB \) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))). \)

1st clause in \(KB \) does not unify

2nd clause in \(KB \) fails

3rd clause in \(KB \) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2)). \)

No clause in \(KB \) unifies. Backtrack to A.
Example Proof with Functions

- Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

- Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify

 2nd clause in KB fails

© P. Heeman, 2020 38 of 40 CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify
 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(13))$.

 No clause unifies. Backtrack to C.

© P. Heeman, 2020 38 of 40 CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

- Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

- Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).

 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify
 2nd clause in KB fails

 $\text{yes} \leftarrow \text{has_leaf}(l_4, l(13))$.

© P. Heeman, 2020 38 of 40 CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

• Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

\[
\begin{align*}
\text{has_leaf}(L, l(L)). \\
\text{has_leaf}(L, n(N, LT, RT)) & \leftarrow \text{has_leaf}(L, LT). \\
\text{has_leaf}(L, n(N, LT, RT)) & \leftarrow \text{has_leaf}(L, RT).
\end{align*}
\]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[
\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\]

1st clause in KB does not unify

2nd clause in KB fails

3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \).

1st clause in KB does not unify

2nd clause in KB fails

3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_3)) \).

1st clause in KB does not unify.

2nd clause in KB unifies. \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_4)) \).

1st clause in KB does. \(\text{yes} \leftarrow . \).
Summary of Proof

\[yes \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))). \]
1st clause in KB does not unify
2nd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, n(n1, l(l1), l(l2))). \]
 1st clause in KB does not unify
 2nd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, l(l1)). \]
 No clause in KB unifies. Backtrack to B.
 2nd clause in KB fails
 3rd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, l(l2)). \]
 No clause in KB unifies. Backtrack to A.
2nd clause in KB fails
3rd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, n(n3, l(l3), n(n4, l(l4), l(l5))))). \]
 1st clause in KB does not unify
 2nd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, l(l3)). \]
 No clause unifies. Backtrack to C.
 2nd clause in KB fails \[yes \leftarrow \text{has_leaf}(l4, l(l3)). \]
 3rd clause in KB unifies \[yes \leftarrow \text{has_leaf}(l4, n(n4, l(l4), l(l5))). \]
 1st clause in KB does not unify.
 2nd clause in KB unifies. \[yes \leftarrow \text{has_leaf}(l4, l(l4)). \]
 1st clause in KB does. \[yes \leftarrow . \]
Final Word on Functions

• Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 *It is the subtree with node n1 which right branch ... and left branch ...

• Unification does the right thing with functions
 - Just do hierarchal symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching