Overview

⇒ Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Variables in Clauses

• Example KB

\[
\begin{align*}
\text{father(tim, steve)} & \quad \text{father(steve, john)} \\
\text{mother(pam, john)} & \quad \text{mother(susan, pam)} \\
\text{mother(helen, steve)} & \quad \text{mother(paula, tim)} \\
\text{parent(X, Y)} & \leftarrow \text{father(X, Y)} \\
\text{parent(X, Y)} & \leftarrow \text{mother(X, Y)} \\
\text{grandparent(X, Y)} & \leftarrow \text{parent(X, Z)} \land \text{parent(Z, Y)}
\end{align*}
\]

• Variables in KB useful for expressing knowledge

- Can derive \textit{parent} and \textit{grandparent} from \textit{father} and \textit{mother}, without having to specifying a lot of extra facts
- Only way to express an infinite amount of knowledge when we add function symbols
Handling Variables

• In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment.
• Could do proof procedure on all ground instances of the clauses
 - Include all constants in \(KB \) and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms

• Example
 \[
 q(a).
 q(b).
 r(a).
 s(W) ← r(W).
 p(X, Y) ← q(X) ∧ s(Y).
 \]
Need Alternative

• Number of ground instances of clauses could be huge

• Example

\[
\text{explained}(\text{Room}, \text{Now}) \leftarrow \text{hasdetector}(\text{Room}) \\
\quad \land \text{lastmotion}(\text{Room}, \text{Prev}) \\
\quad \land \text{subtract}(\text{Now}, \text{Prev}, \text{Diff}) \\
\quad \land \text{motionlessinroom}(\text{Room}, \text{Time}) \\
\quad \land \text{less}(\text{Diff}, \text{Time})
\]

- Has 5 variables: \text{Room} \text{ Now} \text{ Prev} \text{ Diff} \text{ Time}

- If 100 constants in KB & Query,
 will be 100*100*100*100*100 = 10^{10} instances

• Need proof procedure to directly handle clauses with variables
Substitution

• *Substitution* is a finite set of the form \{V_1/t_1, ...V_n/t_n\}
 - Each \(V_i\) is a distinct variable and each \(t_i\) is a term
 - A substitution is in *normal form* if no \(V_i\) appears in any \(t_j\)
 - \{\(X/Y, Y/a\}\} is not in normal form, but \{\(X/a, Y/a\)\} is

• *Application* of a substitution \(\sigma = \{V_1/t_1, ..., V_n/t_n\}\) to expression \(e\) written \(e\sigma\) is the expression with every occurrence of \(V_i\) in \(e\) replaced by the corresponding \(t_i\)
 - \(e\sigma\) is an *instance* of \(e\)
 - if \(e\sigma\) is ground then it is called a ground instance of \(e\)

• Instance of clause represented as original clause + substitution
Examples

• $p(a, X) \{X/c\}$

• $p(Y, c) \{Y/a\}$

• $p(a, X) \{Y/a, Z/X\}$

• $p(X, X, Y, Y, Z) \{X/Z, Y/t\}$

• $p(X, Y) \leftarrow q(a, Z, X, Y, Z) \{X/Y, Z/a\}$
Unifiers

• Substitution σ is a **unifier** of expressions e_1 and e_2 if $e_1\sigma$ is the same as $e_2\sigma$
 - Example: $\{X/a, Y/b\}$ is a unifier of $t(a, Y, c)$ and $t(X, b, c)$

• Expressions have many unifiers
 - Example: $p(X, Y)$ and $p(Z, Z)$

 - Which is best?
Most General Unifier

• **Most General Unifier (MGU)**
 - If σ is a unifier of e_1 and e_2 giving e and if for any other unifier of them, say giving e', e' is an instance of e

• If two expressions can be unified, they will have a MGU
 - Could be more than one

• Expression e is **renaming** of e' if differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other

• Example: $p(X, Y)$ and $p(Z, Z)$
 + $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 + $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$
Overview

• Variables
⇒ Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Top-down Proof Procedure Recap

• Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
yes & \leftarrow a_1 \land \ldots \land a_m \\
a_i & \leftarrow b_1 \land \ldots \land b_p \\
yes & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Definite Resolution with Variables

- Generalized answer clause
 - \(\text{yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m \)

- Resolution Rule

\[
\begin{align*}
\text{yes}(t_1, ..., t_k) & \leftarrow a_1 \land ... \land a_m \\
& \leftarrow b_1 \land ... \land b_p \\
& \leftarrow a_i+1 \land ... \land a_m) \theta
\end{align*}
\]

- Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)
Derivation

• Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$

• γ_0 is answer clause corresponding to original query

• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose a clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

• γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k) \leftarrow$.

• Specification of a proof procedure!
Example: Robot Delivery
Robot Delivery KB

\[
\text{west}(r_{101}, r_{103}). \\
\text{west}(r_{103}, r_{105}). \\
\text{west}(r_{105}, r_{107}). \\
\text{west}(r_{107}, r_{109}). \\
\text{west}(r_{109}, r_{111}). \\
\text{west}(r_{101}, r_{129}). \\
\text{west}(r_{129}, r_{127}). \\
\text{west}(r_{127}, r_{125}). \\
\text{east}(E, W) \leftarrow \text{west}(W, E). \\
\text{next}_\text{door}(E, W) \leftarrow \text{east}(E, W). \\
\text{next}_\text{door}(W, E) \leftarrow \text{west}(W, E). \\
\text{two}_\text{east}(E, W) \leftarrow \text{east}(E, M) \land \text{east}(M, W). \\
\text{?two}_\text{east}(R, r_{107})
\]
Overview

• Variables
• Top-down Proof Procedure with Variables
⇒ Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Reasoning Procedure

• (Not in chapter 2)

• Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is large so need to search carefully

• Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

• Choice points
 - **Select** an atom in body of γ_{i-1}
 - **Choose** a clause in KB whose head unify with the chosen atom
• Always select first atom in body
 - We will have to consider each atom eventually, so just start with the first
• Choose first clause in KB whose head matches
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one
• Equivalent to Depth-first Search (but more lazily)
 - Nodes are derivations γ
 - Derivation has children of everything that can be derived from it, using different rules from the KB
Example

?two_east(_,r107)

Answer clause corresponding

A: Use \texttt{two_east}(E,W)← east(E,M) \land east(M,W)
B: Use \texttt{east}(E,W)← west(W,E)
C: Use \texttt{west}(r101,r103)
 D: Use \texttt{east}(E,W)← west(W,E)
 Nothing unifies with \texttt{west}(r107,r101).
 Nothing else unifies with \texttt{east}(r101,r107).
C: Use \texttt{west}(r103,r105)
D: Use \texttt{east}(E,W)← west(W,E)
 Nothing unifies with \texttt{west}(r107,r105).
 Nothing else unifies with \texttt{east}(r105,r107).

...C: Use \texttt{west}(r109,r111)
D: Use \texttt{east}(E,W)← west(W,E)
 E: Use \texttt{west}(r107,r109)
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
⇒ Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Function Symbols

- Predicate symbols used to assert that something is true or false
- Constants refer to something in the domain
- Variables refer to something in the domain
- Functions also refer to something in the domain
 - Constant *mary* could be mapped to Mary
 - Function *motherof(john)* could also be mapped to Mary
- Predicate *mother*(mary, john) versus function *motherof(john)*
 - Predicate symbol captures truths about the world
 - That Mary is John’s mother
 - Function symbols just point to someone
Usefulness of Function Symbols

- Can talk about objects in the domain without having a constant symbol for them
- Might want to say \texttt{time(13,15)} to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60

- Keep in mind: term \textit{function} not used like it is elsewhere in CS
 - Does not capture anything about how time works
 - Capturing knowledge about time is up to predicate symbols and clauses
Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: patha and pathb
 + Define facts: start(pathb,1)
 after(pathb,1,2)
 after(pathb,2,6)

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)
Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: \texttt{patha} and \texttt{pathb}
 + Define facts: \texttt{start(pathb,1)}
 \texttt{after(pathb,1,2)}
 \texttt{after(pathb,2,6)}

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)

• Can use functions to refer to a path by referring to its elements
 - Functions have a fixed number of arguments
 + So cannot use \texttt{path(1,2) path(1,2,6)}
 - Instead, make path one cell at a time: \texttt{p(6,p(2,p(1,null)))}
 + constant \texttt{null} represents an empty path
 + function \texttt{p(T,R)} refers to path whose top element is \texttt{T} and rest of path is \texttt{R}
Function Syntax in Datalog

- **Function symbol** is a token starting with lowercase letter
- **Term** is either a variable, constant or of the form $f(t_1, ..., t_n)$
 - Where f is a function symbol and the t_i’s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause
Semantics of Function Symbols

• ϕ used to just map constants to objects in the domain

• ϕ also maps n-ary function f to $D^n \rightarrow D$
 - Notice that it is defined as mapping D^n to D, not constants
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols

• Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
 - Example
 + Constant 0
 + Successor function $s : D \rightarrow D$
 + Can specify all of the natural numbers: $0, s(0), s(s(0)), s(s(s(0))), ...$
Defining Functions

• Any knowledge about functions must be defined by clauses
• What knowledge of numbers might we want?

• What knowledge of paths (lists) might we want?
Knowledge about Lists

• Can represent lists by
 - constant **null** represents an empty path
 - function **p(T,R)** refers to path where **T** is top element and **R** is rest of path
 - example: **p(6,p(2,p(1,null)))**
• Can we write a predicate **member(X,List)**
 - True if **X** is in list **List**
Knowledge about Lists

• Can represent lists by
 - constant \texttt{null} represents an empty path
 - function \texttt{p(T,R)} refers to path where \texttt{T} is top element and \texttt{R} is rest of path
 - example: \texttt{p(6,p(2,p(1,null)))}

• Can we write a predicate \texttt{member(X,List)}
 - True if \texttt{X} is in list \texttt{List}

\begin{verbatim}
member(Top,p(Top,Rest))
member(X,p(Top,Rest)) ← member(X,Rest)
\end{verbatim}
• Can use function symbols to build other data structures
• Tree data structure:
 - A labeled tree is either a node \(\text{node}(\text{Name}, \text{LeftTree}, \text{RightTree}) \)
 or a leaf \(l(\text{Name}) \)
 - Example:
 \[
 \text{node}(n1, \text{node}(n2, l(l1), l(l2)), \text{node}(n3, l(l3), \text{node}(n4, l(l4), l(l5))))
 \]

 ![Tree Diagram]

© P. Heeman, 2020
Clauses about Trees

• $has_leaf(L, T)$ is true if L is the label of a leaf in tree T

 $has_leaf(L, l(L))$.

 $has_leaf(L, node(N, LT, RT)) \leftarrow has_leaf(L, LT)$.

 $has_leaf(L, node(N, LT, RT)) \leftarrow has_leaf(L, RT)$.
Clauses about Numbers

• Let $lt(X, Y)$ be true when $X < Y$
 - To define it in Datalog, need to capture facts and rules about it that capture its entire meaning
 - What is a comprehensive fact about lt that we can write?
 + Fact should have lt as its predicate
 + Should include an $s(..)$
 + Make it as general as possible
 - What is a rule that we can write about lt
 + Should have lt on right and left hand side
 + Atom on right hand side should be simpler than left hand side
 + By repeatedly applying the rule, should end at fact
 + Think of this as the induction step in a proof by induction
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols

⇒ Proof Procedures

• Top-Down Reasoning Procedure
Bottom-Up Proof Procedure with Variables

• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances

• But, function symbols cause infinite number of terms

• But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers

• Make sure procedure *fairly*
 introduces ground instances

© P. Heeman, 2020
Top Down Proof Procedure

• Just have to make sure procedure that determines MGU works with function symbols

• Need to be careful about normal form
 - *Substitution* is a finite set of the form \(\{V_1/t_1, \ldots V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in *normal form* if no \(V_i \) appears in any \(t_j \)

• Most substitutions can be put into normal form
 \[
 \{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\}
 \]
 \[
 \{X/Z, Z/X\} \Rightarrow \{X/Z\}
 \]

• Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?
Normal Form of Substitutions

• \(\{X/f(X)\} \) cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = lt(X, s(X)) \)
 \[lt(X, s(Y)) \leftarrow lt(X, Y). \]

• Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = \text{lt}(X, s(X)) \)
 \[
 \text{lt}(X, s(Y)) \leftarrow \text{lt}(X, Y).
 \]

• Does \(\text{lt}(X, X) \) follow from \(KB \)
 - Does \(\text{lt}(X_1, X_1) \) unify with \(\text{lt}(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
 - The unifier \(\{X_1/X, X/s(X)\} \) sort of makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called *occurs check*
Algorithm for Finding MGU (Not in textbook)

• Take two expressions (no variables in common)
 - Compare them token for token (left to right)

• If one has a connector, other must have same one

• If one has \(n \)-ary symbol \(p \), other must as well

• For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable \(V \) and other has term \(t \), add \(V/t \) to substitution
 + \(t \) should not contain \(V \) (occurs check)
 + Apply \(V/t \) to rest of both expressions and to any terms in substitution list
 + Variable \(V \) should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant \(c \), other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
 ⇒ Top-Down Reasoning Procedure
Top-Down Proof Procedure (Repeat)

• Sequence of \(\gamma_0, \gamma_1, \ldots, \gamma_n \)

• \(\gamma_0 \) is answer clause corresponding to original query

• \(\gamma_i \) obtained by
 - Give \(\gamma_{i-1} \) fresh variables
 + Ensures \(\gamma_{i-1} \) does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of \(\gamma_{i-1} \)
 - Choose clause in KB whose head will unify with the chosen atom
 - Resolve \(\gamma_{i-1} \) with clause

• \(\gamma_n \) is an answer, and so is of the form \(\text{yes}(t_1, \ldots, t_k) \leftarrow \).
• Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \text{has_leaf}(L, l(L)).
 \]
 \[
 \text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
 \]
 \[
 \text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \]

• Prove \(l4 \) is a leaf of \(n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))) \)

- Query?
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$).

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2)))$.

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_1))$.

 No clause in KB unifies. Backtrack to B.
Example Proof with Functions

- Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \text{has_leaf}(L, l(L)).
 \]
 \[
 \text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
 \]
 \[
 \text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \]

- Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)
 \[
 \text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
 \]
 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))). \)
 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) fails
Example Proof with Functions

- Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

- Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify
 2nd clause in KB unifies \quad \text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2)))$. \quad A

 1st clause in KB does not unify
 2nd clause in KB fails \quad B

 3rd clause in KB unifies \quad \text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2))$. \quad
Example Proof with Functions

• Defined \(has_leaf(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

 \[
 \begin{align*}
 has_leaf(L, l(L)) &. \\
 has_leaf(L, n(N, LT, RT)) \leftarrow has_leaf(L, LT). \\
 has_leaf(L, n(N, LT, RT)) \leftarrow has_leaf(L, RT).
 \end{align*}
 \]

• Prove \(l4 \) is a leaf of \(n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))) \)

 \[
 \begin{align*}
 yes & \leftarrow has_leaf(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).
 \end{align*}
 \]

 1st clause in \(KB \) does not unify

 2nd clause in \(KB \) unifies

 \[
 \begin{align*}
 yes & \leftarrow has_leaf(l4, n(n1, l(l1), l(l2))). \quad A \\
 1st clause in \(KB \) does not unify
 \end{align*}
 \]

 2nd clause in \(KB \) fails

 3rd clause in \(KB \) unifies

 \[
 \begin{align*}
 yes & \leftarrow has_leaf(l4, l(l2)). \\
 No clause in \(KB \) unifies. Backtrack to \(A \).
 \end{align*}
 \]
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).$

 1st clause in KB does not unify

 2nd clause in KB fails
Example Proof with Functions

• Defined \(\text{has	extunderscore leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \text{has	extunderscore leaf}(L, l(L)).
 \]
 \[
 \text{has	extunderscore leaf}(L, n(N, LT, RT)) \leftarrow \text{has	extunderscore leaf}(L, LT).
 \]
 \[
 \text{has	extunderscore leaf}(L, n(N, LT, RT)) \leftarrow \text{has	extunderscore leaf}(L, RT).
 \]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)
 \[
 \text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
 \]
 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies \(\text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \).
 1st clause in KB does not unify
 2nd clause in KB unifies \(\text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, l(l_1)) \).
 No clause unifies. Backtrack to \(C \).

© P. Heeman, 2020 38 of 40 CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

• Defined \(has_leaf(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

 \[
 \begin{align*}
 has_leaf(L, l(L)). \\
 has_leaf(L, n(N, LT, RT)) & \leftarrow has_leaf(L, LT). \\
 has_leaf(L, n(N, LT, RT)) & \leftarrow has_leaf(L, RT).
 \end{align*}
 \]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

 \[
 yes \leftarrow has_leaf(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
 \]

 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) fails
 3rd clause in \(KB \) unifies

 \[
 \begin{align*}
 & yes \leftarrow has_leaf(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))). \\
 & 1st clause in \(KB \) does not unify \\
 & 2nd clause in \(KB \) fails
 \end{align*}
 \]

 \[
 yes \leftarrow has_leaf(l_4, l(13)).
 \]

\(A \) C

© P. Heeman, 2020

38 of 40

CS560 Class 04: Top-Down Reasoning Procedure
Example Proof with Functions

- Defined \(\text{has}_\text{leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \text{has}_\text{leaf}(L, l(L)).
 \]
 \[
 \text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, LT).
 \]
 \[
 \text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, RT).
 \]

- Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))\)

\[
\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\]

1st clause in KB does not unify

2nd clause in KB fails

3rd clause in KB unifies

\[
\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, l(l_3)).
\]

1st clause in KB does not unify

2nd clause in KB fails

3rd clause in KB unifies

\[
\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, n(n_4, l(l_4), l(l_5))).
\]

1st clause in KB does not unify

2nd clause in KB unifies

\[
\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, l(l_4)).
\]

1st clause in KB does
Summary of Proof

yes←has_leaf(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).
1st clause in KB does not unify
2nd clause in KB unifies yes←has_leaf(l4, n(n1, l(l1), l(l2))). A
 1st clause in KB does not unify
 2nd clause in KB unifies yes←has_leaf(l4, l(l1)). B
 No clause in KB unifies. Backtrack to B.
 2nd clause in KB fails B
 3rd clause in KB unifies yes←has_leaf(l4, l(l2)).
 No clause in KB unifies. Backtrack to A.
2nd clause in KB fails A
3rd clause in KB unifies yes←has_leaf(l4, n(n3, l(l3), n(n4, l(l4), l(l5)))).
 1st clause in KB does not unify
 2nd clause in KB unifies yes←has_leaf(l4, l(l3)). C
 No clause unifies. Backtrack to C.
 2nd clause in KB fails yes←has_leaf(l4, l(l3)). C
 3rd clause in KB unifies yes←has_leaf(l4, n(n4, l(l4), l(l5))).
 1st clause in KB does not unify.
 2nd clause in KB unifies. yes←has_leaf(l4, l(l4)). D
 1st clause in KB does. yes←.
Final Word on Functions

• Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 *It is the subtree with node n1 which right branch ... and left branch ...
• Unification does the right thing with functions
 - Just do hierarchical symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching