Overview

⇒ Variables

• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Variables in Clauses

• Example KB

\[
\begin{align*}
\text{father}(\text{tim}, \text{steve}) & \quad \text{father}(\text{steve}, \text{john}) \\
\text{mother}(\text{pam}, \text{john}) & \quad \text{mother}(\text{susan}, \text{pam}) \\
\text{mother}(\text{helen}, \text{steve}) & \quad \text{mother}(\text{paula}, \text{tim}) \\
\text{parent}(X, Y) & \leftarrow \text{father}(X, Y) \\
\text{parent}(X, Y) & \leftarrow \text{mother}(X, Y) \\
\text{grandparent}(X, Y) & \leftarrow \text{parent}(X, Z) \land \text{parent}(Z, Y)
\end{align*}
\]

• Variables in KB useful for expressing knowledge

- Can derive \textit{parent} and \textit{grandparent} from \textit{father} and \textit{mother},
 without having to specifying a lot of extra facts
- Only way to express an infinite amount of knowledge
 when we add function symbols
Handling Variables

• In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment
• Could do proof procedure on all ground instances of the clauses
 - Include all constants in KB and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms
• Example
 $q(a)$.
 $q(b)$.
 $r(a)$.
 $s(W) \leftarrow r(W)$.
 $p(X, Y) \leftarrow q(X) \land s(Y)$.
Need Alternative

• Number of ground instances of clauses could be huge

• Example

 \[
 \text{explained}(Room, \text{Now}) \leftarrow \text{hasdetector}(Room) \\
 \land \text{lastmotion}(Room, \text{Prev}) \\
 \land \text{subtract}(\text{Now}, \text{Prev}, \text{Diff}) \\
 \land \text{motionlessinroom}(Room, \text{Time}) \\
 \land \text{less}(\text{Diff}, \text{Time})
 \]

 - Has 5 variables: \textit{Room} \textit{Now} \textit{Prev} \textit{Diff} \textit{Time}

 - If 100 constants in KB & Query,

 will be \(100 \times 100 \times 100 \times 100 \times 100 = 10^{10}\) instances

• Need proof procedure to directly handle clauses with variables
Substitution

- **Substitution** is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in *normal form* if no \(V_i \) appears in any \(t_j \)
 - \(\{X/Y, Y/a\} \) is not in normal form, but \(\{X/a, Y/a\} \) is

- **Application** of a substitution \(\sigma = \{V_1/t_1, \ldots, V_n/t_n\} \) to expression \(e \) written \(e\sigma \) is the expression with every occurrence of \(V_i \) in \(e \) replaced by the corresponding \(t_i \)
 - \(e\sigma \) is an *instance* of \(e \)
 - If \(e\sigma \) is ground then it is called a ground instance of \(e \)

- **Instance of clause** represented as original clause + substitution
Examples

• $p(a, X) \{X/c\}$

• $p(Y, c) \{Y/a\}$

• $p(a, X) \{Y/a, Z/X\}$

• $p(X, X, Y, Y, Z) \{X/Z, Y/t\}$

• $p(X, Y) \leftarrow q(a, Z, X, Y, Z) \{X/Y, Z/a\}$
Unifiers

• Substitution σ is a unifier of expressions e_1 and e_2 if $e_1\sigma$ is the same as $e_2\sigma$
 - Example: $\{X/a, Y/b\}$ is a unifier of $t(a, Y, c)$ and $t(X, b, c)$

• Expressions have many unifiers
 - Example: $p(X, Y)$ and $p(Z, Z)$

 - Which is best?
Most General Unifier

- **Most General Unifier (MGU)**
 - If σ is a unifier of e_1 and e_2 giving e and if for any other unifier of them, say giving e', e' is an instance of e

- If two expressions can be unified, they will have a MGU
 - Could be more than one

- Expression e is *renaming* of e' if they differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other

- **Example:** $p(X, Y)$ and $p(Z, Z)$
 - $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 - $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$
Overview

• Variables

⇒ Top-down Proof Procedure with Variables

• Top-Down Reasoning Procedure

• Function Symbols

• Proof Procedures

• Top-Down Reasoning Procedure
Top-down Proof Procedure Recap

• Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
\text{a}_i & \leftarrow b_1 \land \ldots \land b_p \\
\hline
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \ b_1 \land \ldots \land b_p \ a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Definite Resolution with Variables

- Generalized answer clause
 - \(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m \)

- Resolution Rule

 \[
 \begin{align*}
 yes(t_1, ..., t_k) & \leftarrow a_1 \land ... \land a_m \\
 a & \leftarrow b_1 \land ... \land b_p \\
 \end{align*}
 \]

 \[
 \frac{yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \ b_1 \land ... \land b_p \ a_{i+1} \land ... \land a_m}{(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \ b_1 \land ... \land b_p \ a_{i+1} \land ... \land a_m)\theta}
 \]

 - Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)
Derivation

• Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$

• γ_0 is answer clause corresponding to original query

• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose a clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

• γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k)\leftarrow$.

• Specification of a proof procedure!
Example: Robot Delivery

© P. Heeman, 2020
Robot Delivery KB

\[west(r101, r103). \]
\[west(r103, r105). \]
\[west(r105, r107). \]
\[west(r107, r109). \]
\[west(r109, r111). \]
\[west(r131, r129). \]
\[west(r129, r127). \]
\[west(r127, r125). \]
\[east(E, W) ← west(W, E). \]
\[next_door(E, W) ← east(E, W). \]
\[next_door(W, E) ← west(W, E). \]
\[two_east(E, W) ← east(E, M) \land east(M, W). \]

\(?two_east(R, r107)\)
Overview

• Variables
• Top-down Proof Procedure with Variables
⇒ Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Reasoning Procedure

• (Not in chapter 2)

• Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is large so need to search carefully

• Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

• Choice points
 - **Select** an atom in body of γ_{i-1}
 - **Choose** a clause in KB whose head with unify with the chosen atom

• Always select first atom in body
 - We will have to consider each atom eventually, so just start with the first

• Choose first clause in KB whose head matches
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one
Example

?two_east(_0,r107)

Answer clause corresponding

A: Use \(\text{two}_\text{east}(E,W) \leftarrow \text{east}(E,M) \land \text{east}(M,W) \)

B: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

C: Use \(\text{west}(r101,r103) \)

D: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

Nothing unifies with \(\text{west}(r107,r101) \).

Nothing else unifies with \(\text{east}(r101,r107) \).

E: Use \(\text{west}(r107,r109) \)

Nothing unifies with \(\text{west}(r107,r105) \).

Nothing else unifies with \(\text{east}(r105,r107) \).

...
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
⇒ Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Function Symbols

• Predicate symbols used to assert that something is true or false
• Constants refer to something in the domain
• Variables refer to something in the domain
• Functions also refer to something in the domain
 - Constant *mary* could be mapped to Mary
 - Function *motherof(john)* could also be mapped to Mary
Usefulness of Function Symbols

• Can talk about objects in the domain without having a constant symbol for them
• Might want to say \textit{time}(13, 15) to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60
Further Usefullness of Function Symbols

- What about lists or sets of individuals
 - We could make up a constant symbol for each list

 \[
 \text{has}_\text{member}(\text{lista}, \text{peter}) \\
 \text{has}_\text{member}(\text{lista}, \text{tim})
 \]

 - But infinite number of lists even when there is just a single constant

 + Can’t make up a name for every possible list

- Can use functions to refer to a list by referring to its elements

 - Functions have to have a fixed number of arguments

 + So cannot use \text{list}(a, b) \text{list}(c, d, e)

 - Instead use function that lets you specify list one element at a time

 \[
 \text{cons}(\text{peter, cons(tim, null)})
 \]

 + \text{null} is an empty list

 + \text{cons}(X, L) refers to the list whose first element is X and the rest of the list as L
Function Syntax in Datalog

- *Function symbol* is a token starting with lowercase letter
- *Term* is either a variable, constant or of the form $f(t_1, ... t_n)$
 - Where f is a function symbol and the t_i’s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause
Semantics of Function Symbols

• \(\phi \) used to just map constants to objects in the domain

• \(\phi \) also maps n-ary function \(f \) to \(D^n \rightarrow D \)
 - Notice that it is defined as mapping \(D^n \) to \(D \), not constants\(^n\)
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols

• Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
 - Example
 + Constant 0
 + Successor function \(s : D \rightarrow D \)
 + Can specify all of the natural numbers: \(0, s(0), s(s(0)), s(s(s(0))), \ldots \)
Defining Functions

- Any knowledge about functions must be defined by clauses.
- What knowledge of numbers might we want?
- What knowledge of lists might we want?
• Can use function symbols to build other data structures
• Tree data structure:
 - A labeled tree is either a node \(\text{node}(Name, \text{LeftTree}, \text{RightTree}) \)
 or a leaf \(l(Name) \)
 - Example:
 \[
 \text{node}(n_1, \text{node}(n_2, l(l_1), l(l_2)), \text{node}(n_3, l(l_3), \text{node}(n_4, l(l_4), l(l_5))))
 \]
Clauses about Trees

- $has_leaf(L, T)$ is true if L is the label of a leaf in tree T

 $has_leaf(L, l(L))$.

 $has_leaf(L, node(N, LT, RT)) \leftarrow has_leaf(L, LT)$.

 $has_leaf(L, node(N, LT, RT)) \leftarrow has_leaf(L, RT)$.
Overview

- Variables
- Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure
- Function Symbols
→ Proof Procedures
- Top-Down Reasoning Procedure
Bottom-Up Proof Procedure with Variables

• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances

• But, function symbols cause infinite number of terms

• But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers

• Make sure procedure *fairly* introduces ground instances
Top Down Proof Procedure

- Just have to make sure procedure that determines MGU works with function symbols
- Need to be careful about normal form
 - *Substitution* is a finite set of the form \(\{V_1/t_1, \ldots V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in *normal form* if no \(V_i \) appears in any \(t_j \)
- Most substitutions can be put into normal form
 \[
 \{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\} \\
 \{X/Z, Z/X\} \Rightarrow \{X/Z\}
 \]
- Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = lt(X, s(X)) \)

 \[
 lt(X, s(Y)) \leftarrow lt(X, Y). \]

• Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
Normal Form of Substitutions

• \(\{X/f(X)\} \) cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = lt(X, s(X)) \)
 \[lt(X, s(Y)) \leftarrow lt(X, Y). \]

• Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
 - The unifier \(\{X_1/X, X/s(X)\} \) makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called occurs check
Algorithm for Finding MGU (Not in textbook)

• Take two expressions (no variables in common)
 - Compare them token for token (left to right)
• If one has a connector, other must have same one
• If one has n-ary symbol p, other must as well
• For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable V and other has term t, add V/t to substitution
 + t should not contain V (occurs check)
 + Apply V/t to rest of both expressions and to any terms in substitution list
 + Variable V should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant c, other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]
Overview

- Variables
- Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures

⇒ Top-Down Reasoning Procedure
Top-Down Proof Procedure (Repeat)

- Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$
- γ_0 is answer clause corresponding to original query
- γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - **Choose** an atom in body of γ_{i-1}
 - **Choose** clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause
- γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k)\leftarrow$.
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

- Query?
Example Proof with Functions

• Defined \(has_leaf(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

\[
has_leaf(L, l(L)).
\]
\[
has_leaf(L, n(N, LT, RT)) \leftarrow has_leaf(L, LT).
\]
\[
has_leaf(L, n(N, LT, RT)) \leftarrow has_leaf(L, RT).
\]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[
yes \leftarrow has_leaf(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\]
1st clause in KB does not unify

2nd clause in KB unifies \(yes \leftarrow has_leaf(l_4, n(n_1, l(l_1), l(l_2))). \) \(A \)

1st clause in KB does not unify

2nd clause in KB unifies \(yes \leftarrow has_leaf(l_4, l(l_1)). \) \(B \)

No clause in KB unifies. Backtrack to B.
• Defined $has_leaf(L, T)$ as true if L is label of leaf in tree T
 $has_leaf(L, l(L))$.
 $has_leaf(L, n(N, LT, RT))$ ← $has_leaf(L, LT)$.
 $has_leaf(L, n(N, LT, RT))$ ← $has_leaf(L, RT)$.

• Prove $l4$ is a leaf of $n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$

 yes ← $has_leaf(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$).

 1st clause in KB does not unify
 2nd clause in KB unifies yes ← $has_leaf(l4, n(n1, l(l1), l(l2)))$.

 1st clause in KB does not unify
 2nd clause in KB fails
Example Proof with Functions

- Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

\[
\begin{align*}
\text{has_leaf}(L, l(L)) &= \text{true} \\
\text{has_leaf}(L, n(N, LT, RT)) &\leftarrow \text{has_leaf}(L, LT) \\
\text{has_leaf}(L, n(N, LT, RT)) &\leftarrow \text{has_leaf}(L, RT).
\end{align*}
\]

- Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[
\begin{align*}
\text{yes} &\leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\end{align*}
\]

1st clause in KB does not unify

2nd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))). \) \(A \)

1st clause in KB does not unify

2nd clause in KB fails \(B \)

3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2)). \)
Example Proof with Functions

• Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \begin{align*}
 &\text{has_leaf}(L, l(L)). \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
 \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \end{align*}
 \]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)
 \[
 \begin{align*}
 &\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
 \end{align*}
 \]

 1st clause in KB does not unify
 2nd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))). \)

 A
 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2)). \)

 B
 No clause in KB unifies. Backtrack to A.
Example Proof with Functions

• Defined $\text{has}_\text{leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has}_\text{leaf}(L, l(L))$.

 $\text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, LT)$.

 $\text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 yes $\leftarrow \text{has}_\text{leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify
 2nd clause in KB fails

 A
Example Proof with Functions

• Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[
 \begin{align*}
 &\text{has_leaf}(L, l(L)). \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT). \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \end{align*}
 \]

• Prove \(l4 \) is a leaf of \(n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))) \)
 \[
 \text{yes} \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).
 \]

 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) fails
 3rd clause in \(KB \) unifies
 \[
 \begin{align*}
 &\text{yes} \leftarrow \text{has_leaf}(l4, n(n3, l(l3), n(n4, l(l4), l(l5)))), \\
 &\text{1st clause in } KB \text{ does not unify}, \\
 &\text{2nd clause in } KB \text{ unifies} \\
 &\text{No clause unifies. Backtrack to } C.
 \end{align*}
 \]
Example Proof with Functions

- Defined \(\text{has_leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[\text{has_leaf}(L, l(L)). \]
 \[\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT). \]
 \[\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT). \]

- Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[
\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\]

1st clause in KB does not unify
2nd clause in KB fails
3rd clause in KB unifies

\[
\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))).
\]

1st clause in KB does not unify
2nd clause in KB fails

\[
\text{yes} \leftarrow \text{has_leaf}(l_4, l(13)).
\]
Example Proof with Functions

- Defined `has_leaf(L, T)` as true if `L` is label of leaf in tree `T`

 \[
 \begin{align*}
 \text{has_leaf}(L, l(L)). \\
 \text{has_leaf}(L, n(N, L, T)) & \leftarrow \text{has_leaf}(L, L, T). \\
 \text{has_leaf}(L, n(N, L, T)) & \leftarrow \text{has_leaf}(L, R, T).
 \end{align*}
 \]

- Prove `l4` is a leaf of `n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))`

 \[
 \text{yes} \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).
 \]

 1st clause in `KB` does not unify

 2nd clause in `KB` fails

 3rd clause in `KB` unifies \(\text{yes} \leftarrow \text{has_leaf}(l4, n(n3, l(l3), n(n4, l(l4), l(l5)))) \).

 1st clause in `KB` does not unify

 2nd clause in `KB` fails \(\text{yes} \leftarrow \text{has_leaf}(l4, l(l3)) \).

 3rd clause in `KB` unifies \(\text{yes} \leftarrow \text{has_leaf}(l4, n(n4, l(l4), l(l5))) \).

 1st clause in `KB` does not unify.

 2nd clause in `KB` unifies. \(\text{yes} \leftarrow \text{has_leaf}(l4, l(l4)) \).

 1st clause in `KB` does. \(\text{yes} \leftarrow . \).
Summary of Proof

\[\text{yes} \leftarrow \text{has_leaf}(l_4, n(n, n_2, l_1, l_2)), n(n_3, l_3, n(n_4, l_4, l_5))).\]

1st clause in \(KB\) does not unify

2nd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l_1, l_2))).\) \hspace{1cm} A

\hspace{1cm} 1st clause in \(KB\) does not unify

\hspace{1cm} 2nd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l_1)).\) \hspace{1cm} B

\hspace{1cm} No clause in \(KB\) unifies. Backtrack to B.

2nd clause in \(KB\) fails \hspace{1cm} B

3rd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l_2)).\)

\hspace{1cm} No clause in \(KB\) unifies. Backtrack to A.

2nd clause in \(KB\) fails \hspace{1cm} A

3rd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l_3, n(n_4, l_4, l_5))).\)

\hspace{1cm} 1st clause in \(KB\) does not unify

\hspace{1cm} 2nd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l_3)).\) \hspace{1cm} C

\hspace{1cm} No clause unifies. Backtrack to C.

2nd clause in \(KB\) fails \(\text{yes} \leftarrow \text{has_leaf}(l_4, l_3)).\) \hspace{1cm} C

3rd clause in \(KB\) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_4, l_4, l_5))).\)

\hspace{1cm} 1st clause in \(KB\) does not unify.

\hspace{1cm} 2nd clause in \(KB\) unifies. \(\text{yes} \leftarrow \text{has_leaf}(l_4, l_4)).\) \hspace{1cm} D

\hspace{1cm} 1st clause in \(KB\) does. \(\text{yes} \leftarrow .\)
Final Word on Functions

• Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 It is the subtree with node n1 which right branch ... and left branch ...
• Unification does the right thing with functions
 - Just do hierarchal symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching