Overview

⇒ Variables

• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Variables in Clauses

- Example KB

 \[\text{father}(tim, steve) \quad \text{father}(steve, john) \]
 \[\text{mother}(pam, john) \quad \text{mother}(susan, pam) \]
 \[\text{mother}(helen, steve) \quad \text{mother}(paula, tim) \]

 \[\text{parent}(X, Y) \leftarrow \text{father}(X, Y) \]
 \[\text{parent}(X, Y) \leftarrow \text{mother}(X, Y) \]

 \[\text{grandparent}(X, Y) \leftarrow \text{parent}(X, Z) \land \text{parent}(Z, Y) \]

- Variables in KB useful for expressing knowledge

 - Can derive \textit{parent} and \textit{grandparent} from \textit{father} and \textit{mother}, without having to specifying a lot of extra facts

 - Only way to express an infinite amount of knowledge when we add function symbols
Handling Variables

- In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment
- Could do proof procedure on all ground instances of the clauses
 - Include all constants in KB and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms

- Example

 $q(a)$.
 $q(b)$.
 $r(a)$.
 $s(W) \leftarrow r(W)$.
 $p(X, Y) \leftarrow q(X) \land s(Y)$.

© P. Heeman, 2020
Need Alternative

• Number of ground instances of clauses could be huge

• Example

\[\text{explained}(Room, Now) \leftarrow \text{hasdetector}(Room) \]
\[\wedge \text{lastmotion}(Room, Prev) \]
\[\wedge \text{subtract}(Now, Prev, Diff) \]
\[\wedge \text{motionlessinroom}(Room, Time) \]
\[\wedge \text{less}(Diff, Time)\]

- Has 5 variables: Room Now Prev Diff Time

- If 100 constants in KB & Query,
 will be 100*100*100*100*100 = 10^{10} instances

• Need proof procedure to directly handle clauses with variables
Substitution

- **Substitution** is a finite set of the form \{V_1/t_1, ...V_n/t_n\}
 - Each \(V_i\) is a distinct variable and each \(t_i\) is a term
 - A substitution is in *normal form* if no \(V_i\) appears in any \(t_j\)
 - \(\{X/Y, Y/a\}\) is not in normal form, but \(\{X/a, Y/a\}\) is

- **Application** of a substitution \(\sigma = \{V_1/t_1, ..., V_n/t_n\}\) to expression \(e\) written \(e\sigma\) is the expression with every occurrence of \(V_i\) in \(e\) replaced by the corresponding \(t_i\)
 - \(e\sigma\) is an *instance* of \(e\)
 - if \(e\sigma\) is ground then it is called a ground instance of \(e\)

- Instance of clause represented as original clause + substitution
Examples

• $p(a, X) \{X/c\}$

• $p(Y, c) \{Y/a\}$

• $p(a, X) \{Y/a, Z/X\}$

• $p(X, X, Y, Y, Z) \{X/Z, Y/t\}$

• $p(X, Y)\leftarrow q(a, Z, X, Y, Z) \{X/Y, Z/a\}$
Unifiers

• Substitution \(\sigma \) is a **unifier** of expressions \(e_1 \) and \(e_2 \) if \(e_1\sigma \) is the same as \(e_2\sigma \)

 - Example: \(\{X/a, Y/b\} \) is a unifier of \(t(a, Y, c) \) and \(t(X, b, c) \)

• Expressions have many unifiers

 - Example: \(p(X, Y) \) and \(p(Z, Z) \)

 - Which is best?
Most General Unifier

- **Most General Unifier (MGU)**
 - If σ is a unifier of e_1 and e_2 giving e and if for any other unifier of them, say giving e', e' is an instance of e

- If two expressions can be unified, they will have a MGU
 - Could be more than one

- Expression e is *renaming* of e' if differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other

- Example: $p(X, Y)$ and $p(Z, Z)$
 + $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 + $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$
Overview

• Variables

⇒ Top-down Proof Procedure with Variables

• Top-Down Reasoning Procedure

• Function Symbols

• Proof Procedures

• Top-Down Reasoning Procedure
Top-down Proof Procedure Recap

• Start with goal, work toward facts in KB

• Definite Clause Resolution for Ground Case

\[
yes \leftarrow a_1 \land ... \land a_m
\]
\[
a_i \leftarrow b_1 \land ... \land b_p
\]
\[
yes \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p \land a_{i+1} \land ... \land a_m
\]
Definite Resolution with Variables

- Generalized answer clause
 \[\text{yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m \]

- Resolution Rule
 \[
 \begin{align*}
 \text{yes}(t_1, ..., t_k) & \leftarrow a_1 \land ... \land a_m \\
 a & \leftarrow b_1 \land ... \land b_p \\
 \hline
 (\text{yes}(t_1, ..., t_k) & \leftarrow a_1 \land ... \land a_{i-1} b_1 \land ... \land b_p a_{i+1} \land ... \land a_m) \theta
 \end{align*}
 \]

 - Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)
Derivation

- Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$
- γ_0 is answer clause corresponding to original query
- γ_i obtained by
 - Give γ_{i-1} fresh variables
 - Ensures γ_{i-1} does not have any variables in common with anything in KB
 - Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose a clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

- γ_n is an answer, and so is of the form $\text{yes}(t_1, \ldots, t_k)\leftarrow$.

- Specification of a proof procedure!
Example: Robot Delivery
Robot Delivery KB

west(r101, r103).
west(r103, r105).
west(r105, r107).
west(r107, r109).
west(r109, r111).
west(r131, r129).
west(r129, r127).
west(r127, r125).
east(E, W) ← west(W, E).
next_door(E, W) ← east(E, W).
next_door(W, E) ← west(W, E).
two_east(E, W) ← east(E, M) ∧ east(M, W).

?two_east(R, r107)
Overview

• Variables
• Top-down Proof Procedure with Variables
⇒ Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Reasoning Procedure

• (Not in chapter 2)

• Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through *search*
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is *large* so need to search carefully

• Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

• Choice points
 - Select an atom in body of γ_{i-1}
 - Choose a clause in KB whose head with unify with the chosen atom

• Always select first atom in body
 - We will have to consider each atom eventually, so just start with the first

• Choose first clause in KB whose head matches
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one

• Equivalent to Depth-first Search (but more lazily)
 - Nodes are derivations γ
 - Derivation has children of everything that can be derived from it, using different rules from the KB
Example

?a_two_east(0,r107)

Answer clause corresponding

A: Use \(\text{two}_e\text{ast}(E,W) \leftarrow \text{east}(E,M) \land \text{east}(M,W) \)

B: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

C: Use \(\text{west}(r101,r103) \)

D: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

Nothing unifies with \(\text{west}(r107,r101) \).

Nothing else unifies with \(\text{east}(r101,r107) \).

Backtrack to D

Backtrack to C

C: Use \(\text{west}(r103,r105) \)

D: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

Nothing unifies with \(\text{west}(r107,r105) \).

Nothing else unifies with \(\text{east}(r105,r107) \).

Backtrack to D

Backtrack to C

...

C: Use \(\text{west}(r109,r111) \)

D: Use \(\text{east}(E,W) \leftarrow \text{west}(W,E) \)

E: Use \(\text{west}(r107,r109) \)

...
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
⇒ Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure
Function Symbols

- Predicate symbols used to assert that something is true or false
- Constants refer to something in the domain
- Variables refer to something in the domain
- Functions also refer to something in the domain
 - Constant mary could be mapped to Mary
 - Function motherof(john) could also be mapped to Mary
- Predicate mother(mary, john) versus function motherof(john)
 - Predicate symbol captures truths about the world
 + That Mary is John’s mother
 - Function symbols just point to someone
Usefulness of Function Symbols

• Can talk about objects in the domain without having a constant symbol for them

• Might want to say \texttt{time(13,15)} to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60

• Keep in mind: term \textit{function} not used like it is elsewhere in CS
 - Does not capture anything about how time works
 - Capturing knowledge about time is up to predicate symbols and clauses
Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: patha and pathb
 + Define facts: start(pathb,1)
 after(pathb,1,2)
 after(pathb,2,6)

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)
Further Usefullness of Function Symbols

- Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: patha and pathb
 + Define facts:
 - `start(pathb,1)`
 - `after(pathb,1,2)`
 - `after(pathb,2,6)`

- But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)

- Can use functions to refer to a path by referring to its elements
 - Functions have a fixed number of arguments
 + So cannot use `path(1,2) path(1,2,6)`
 - Instead, make path one cell at a time: `p(6,p(2,p(1,null)))`
 + constant `null` represents an empty path
 + function `p(T,R)` refers to path whose top element is `T` and rest of path is `R`
Function Syntax in Datalog

- **Function symbol** is a token starting with lowercase letter
- **Term** is either a variable, constant or of the form $f(t_1, \ldots t_n)$
 - Where f is a function symbol and the t_i’s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause
Semantics of Function Symbols

- ϕ used to just map constants to objects in the domain
- ϕ also maps n-ary function f to $D^n \rightarrow D$
 - Notice that it is defined as mapping D^n to D, not constants
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols
- Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
 - Example
 + Constant 0
 + Successor function $s : D \rightarrow D$
 + Can specify all of the natural numbers: $0, s(0), s(s(0)), s(s(s(0))), \ldots$
Defining Functions

• Any knowledge about functions must be defined by clauses
• What knowledge of numbers might we want?

• What knowledge of paths (lists) might we want?
Knowledge about Lists

• Can represent lists by
 - constant null represents an empty path
 - function $p(T,R)$ refers to path where T is top element and R is rest of path
 - example: $p(6,p(2,p(1,null)))$

• Can we write a predicate member(X,$List$)
 - True if X is in list $List$
Knowledge about Lists

• Can represent lists by
 - constant `null` represents an empty path
 - function `p(T,R)` refers to path where `T` is top element and `R` is rest of path
 - example: `p(6,p(2,p(1,null)))`

• Can we write a predicate `member(X,List)`
 - True if `X` is in list `List`

 `member(Top,p(Top,Rest))`

 `member(X,p(Top,Rest)) ← member(X,Rest)`
• Can use function symbols to build other data structures

• Tree data structure:
 - A labeled tree is either a node \(\text{node}(Name, \text{LeftTree}, \text{RightTree}) \)
 \hspace{1cm}
 or a leaf \(l(Name) \)

 - Example:
 \(\text{node}(n1, \text{node}(n2, l(l1), l(l2)), \text{node}(n3, l(l3), \text{node}(n4, l(l4), l(l5)))) \)

\[
\begin{array}{c}
\text{n1} \\
\text{n2} \quad \text{n3} \\
\text{l1} \quad \text{l2} \quad \text{l3} \quad \text{n4} \\
\text{l4} \quad \text{l5}
\end{array}
\]
Clauses about Trees

- $\text{has_leaf}(L, T)$ is true if L is the label of a leaf in tree T

 $\text{has_leaf}(L, \ell(L))$.

 $\text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

© P. Heeman, 2020
Clauses about Numbers

• Let $lt(X, Y)$ be true when $X < Y$
 - To define it in Datalog, need to capture facts and rules about it that capture its entire meaning
 - What is a comprehensive fact about lt that we can write?
 + Fact should have lt as its predicate
 + Should include an $s(\ldots)$
 + Make it as general as possible
 - What is a rule that we can write about lt?
 + Should have lt on right and left hand side
 + Atom on right hand side should be simpler than left hand side
 + By repeatedly applying the rule, should end at fact
 + Think of this as the induction step in a proof by induction
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
⇒ Proof Procedures
• Top-Down Reasoning Procedure
Bottom-Up Proof Procedure with Variables

• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances

• But, function symbols cause infinite number of terms

• But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers

• Make sure procedure *fairly* introduces ground instances
Top Down Proof Procedure

- Just have to make sure procedure that determines MGU works with function symbols
- Need to be careful about normal form
 - *Substitution* is a finite set of the form \(\{V_1/t_1, \ldots V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in *normal form* if no \(V_i \) appears in any \(t_j \)
- Most substitutions can be put into normal form
 \(\{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\} \)
 \(\{X/Z, Z/X\} \Rightarrow \{X/Z\} \)
- Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?
Normal Form of Substitutions

• \(\{X/f(X)\} \) cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = \text{lt}(X, s(X)) \)
 \(\text{lt}(X, s(Y)) \leftarrow \text{lt}(X, Y) \).

• Does \(\text{lt}(X, X) \) follow from \(KB \)
 - Does \(\text{lt}(X_1, X_1) \) unify with \(\text{lt}(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

• Consider \(KB = lt(X, s(X))\)

\[
lt(X, s(Y)) \leftarrow lt(X, Y).
\]

• Does \(lt(X, X)\) follow from \(KB\)

 - Does \(lt(X_1, X_1)\) unify with \(lt(X, s(X))\)?
 + Note we made up new variables so we don’t get confused
 - The unifier \(\{X_1/X, X/s(X)\}\) sort of makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called *occurs check*
Algorithm for Finding MGU (Not in textbook)

• Take two expressions (no variables in common)
 - Compare them token for token (left to right)
• If one has a connector, other must have same one
• If one has \(n \)-ary symbol \(p \), other must as well
• For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable \(V \) and other has term \(t \), add \(V/t \) to substitution
 + \(t \) should not contain \(V \) (occurs check)
 + Apply \(V/t \) to rest of both expressions and to any terms in substitution list
 + Variable \(V \) should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant \(c \), other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures

⇒ Top-Down Reasoning Procedure
Top-Down Proof Procedure (Repeat)

- Sequence of $\gamma_0, \gamma_1, \ldots, \gamma_n$

- γ_0 is answer clause corresponding to original query

- γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - **Choose** an atom in body of γ_{i-1}
 - **Choose** clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause

- γ_n is an answer, and so is of the form $yes(t_1, \ldots, t_k)\leftarrow$.
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T
 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove $l4$ is a leaf of $n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$

- Query?
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$)

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2)))$.

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_1))$.

 No clause in KB unifies. Backtrack to B.
Example Proof with Functions

• Defined has_leaf(L, T) as true if L is label of leaf in tree T
 has_leaf(L, l(L)).
 has_leaf(L, n(N, LT, RT)) ← has_leaf(L, LT).
 has_leaf(L, n(N, LT, RT)) ← has_leaf(L, RT).

• Prove l4 is a leaf of n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))
 yes ← has_leaf(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).

 1st clause in KB does not unify
 2nd clause in KB unifies yes ← has_leaf(l4, n(n1, l(l1), l(l2))). A

 1st clause in KB does not unify
 2nd clause in KB fails B
Example Proof with Functions

- Defined \textit{has_leaf}(L, T) as true if \(L \) is label of leaf in tree \(T \)
 \(\text{has_leaf}(L, l(L)). \)
 \(\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT). \)
 \(\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT). \)

- Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)
 \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))). \)

 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2))). \) \(A \)

 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) fails \(B \)

 3rd clause in \(KB \) unifies \(\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2)). \)
Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.

 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$.

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, l(l_1), l(l_2)))$. \hspace{1cm} A

 1st clause in KB does not unify

 2nd clause in KB fails $\hspace{1cm} B$

 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l_2))$.

 No clause in KB unifies. Backtrack to A.
Example Proof with Functions

• Defined has_leaf(L, T) as true if L is label of leaf in tree T

 $\text{has_leaf}(L, l(L))$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT)$.
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))$

 yes $\leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))))$.

 1st clause in KB does not unify
 2nd clause in KB fails
Example Proof with Functions

• Defined \(\text{has}_\text{leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)
 \[\text{has}_\text{leaf}(L, l(L)). \]
 \[\text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, LT). \]
 \[\text{has}_\text{leaf}(L, n(N, LT, RT)) \leftarrow \text{has}_\text{leaf}(L, RT). \]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)
 \[\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, n(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))). \]
 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies \[\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))). \]
 1st clause in KB does not unify
 2nd clause in KB unifies \[\text{yes} \leftarrow \text{has}_\text{leaf}(l_4, l(13)). \]
 No clause unifies. Backtrack to \(C \).
• Defined \(\text{has	extunderscore leaf}(L, T) \) as true if \(L \) is label of leaf in tree \(T \)

\[
\begin{align*}
\text{has	extunderscore leaf}(L, l(L)).
\text{has	extunderscore leaf}(L, n(N, LT, RT)) & \leftarrow \text{has	extunderscore leaf}(L, LT).
\text{has	extunderscore leaf}(L, n(N, LT, RT)) & \leftarrow \text{has	extunderscore leaf}(L, RT).
\end{align*}
\]

• Prove \(l_4 \) is a leaf of \(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \)

\[
\text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).
\]

1st clause in KB does not unify

2nd clause in KB fails

3rd clause in KB unifies \(\text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, n(n_3, l(l_3), n(n_4, l(l_4), l(l_5)))) \).

1st clause in KB does not unify

2nd clause in KB fails \(\text{yes} \leftarrow \text{has	extunderscore leaf}(l_4, l(13)) \).
Example Proof with Functions

- Defined `has_leaf(L, T)` as true if `L` is label of leaf in tree `T`

 \[
 \begin{align*}
 &\text{has_leaf}(L, l(L)). \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT). \\
 &\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \end{align*}
 \]

- Prove `l4` is a leaf of \(n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5)))) \)

\[
\text{yes} \leftarrow \text{has_leaf}(l4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))).
\]

 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l4, n(n3, l(l3), n(n4, l(l4), l(l5)))) \).
 1st clause in KB does not unify
 2nd clause in KB fails \(\text{yes} \leftarrow \text{has_leaf}(l4, l(l3)) \).
 3rd clause in KB unifies \(\text{yes} \leftarrow \text{has_leaf}(l4, n(n4, l(l4), l(l5)))) \).

 1st clause in KB does not unify.
 2nd clause in KB unifies. \(\text{yes} \leftarrow \text{has_leaf}(l4, l(l4)) \).

 1st clause in KB does. \(\text{yes} \leftarrow . \)
Summary of Proof

\[yes \leftarrow \text{has leaf}(l4, n(n1, n(n2, l(l1), l(l2))), n(n3, l(l3), n(n4, l(l4), l(l5)))) \].

1st clause in \(KB \) does not unify

2nd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, n(n1, l(l1), l(l2))) \). \(A \)
 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, l(l1)) \). \(B \)
 No clause in \(KB \) unifies. Backtrack to \(B \).
 2nd clause in \(KB \) fails
 3rd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, l(l2)) \). \(B \)
 No clause in \(KB \) unifies. Backtrack to \(A \).
2nd clause in \(KB \) fails

3rd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, n(n3, l(l3), n(n4, l(l4), l(l5)))) \). \(A \)
 1st clause in \(KB \) does not unify
 2nd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, l(l3)) \). \(C \)
 No clause unifies. Backtrack to \(C \).
 2nd clause in \(KB \) fails \(yes \leftarrow \text{has leaf}(l4, l(l3)) \). \(C \)
 3rd clause in \(KB \) unifies \(yes \leftarrow \text{has leaf}(l4, n(n4, l(l4), l(l5))) \). \(C \)
 1st clause in \(KB \) does not unify.
 2nd clause in \(KB \) unifies. \(yes \leftarrow \text{has leaf}(l4, l(l4)) \). \(D \)
 1st clause in \(KB \) does. \(yes \leftarrow \).
Final Word on Functions

- Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 *It is the subtree with node n1 which right branch ... and left branch ...

- Unification does the right thing with functions
 - Just do hierarchical symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching