Overview

⇒ Semantics

• Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Review

• An interpretation maps any clause to either true or false
 - It is a complete mapping

• A model I of KB is an interpretation that maps every clause in KB to true

• $KB \models g$ iff every model of KB makes g true
Example

- **KB:**

 \[
 \text{female(sally)}
 \]

 \[
 \text{person}(X) \leftarrow \text{female}(X)
 \]

- Prove $KB \models \text{person}(sally)$

- What does $KB \models \text{person}(sally)$ mean?

 - Means that if interpretation I models KB then it models $\text{person}(sally)$

 - Could prove this by checking all interpretations

- Let’s do proof instead

 - Let I be a model of KB, prove that I makes $\text{person}(sally)$ true
A Semantic Proof

• Let $I = \{D, \phi, \pi\}$ be a model of $KB = \{female(sally) \leftarrow person(X) \leftarrow female(X)\}$
 - So $\langle \phi(sally) \rangle \in \pi(female)$
 - Say $\phi(sally) = s$, so $\langle s \rangle \in \pi(female)$ \hspace{1cm} (1)
 - $person(X) \leftarrow female(X)$ must be true for I_ρ for any var. assign. ρ \hspace{1cm} (2)

• Consider variable assignment ρ where $\rho(X) = s$
 - If $female(X)$ true for I_ρ then so must $person(X)$ (from (2)) \hspace{1cm} (3)
 - $\rho(X) = s$ and $\langle s \rangle \in \pi(female)$ so $female(X)$ is true for I_ρ \hspace{1cm} (4)
 - So $person(X)$ must be true for I_ρ (from (3) and (4))
 - $\rho(X) = s$ so $\langle s \rangle \in \pi(person)$ \hspace{1cm} (5)
 - Since $\phi(sally) = s$, $person(sally)$ is true under I
• Say $\text{parent}(X, Y) \leftarrow \text{father}(X, Y)$ is in KB
 - Implicit universal quantifiers around it
 - Anytime that $\text{father}(X, Y)$ is true, so must $\text{parent}(X, Y)$

• Say $\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z) \land \text{parent}(Z, Y)$ in KB
 - This clause is true for all X, Y, Z
 - $\forall X Y Z \ (\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z) \land \text{parent}(Z, Y))$.
 - Z only appears in the body

• How does Z work here (variable just in the body)?
 - For any X and Y, if we find Z that makes body true, head must be true
 - Now it seems that Z is just existentially quantified
 + We just need to find one Z for each X and Y, not ensure it is true for all Z
 - $\forall XY \ (\text{grandfather}(X, Y) \leftarrow (\exists Z \ \text{father}(X, Z) \land \text{parent}(Z, Y)))$.
Overview

• Semantics

⇒ Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Ground Queries

• A query is a way to ask if a body is a logical consequence of the knowledge base: \(? \ b_1 \land ... \land b_m \)

• Ground query (no variables) has the answer
 - “yes” if the body is a logical consequence of the KB
 - “no” if the body is not a logical consequence of the KB
 + We do not distinguish between it being false in all models or just some
 + Cannot tell if query is false in the intended interpretation

• Can do query-answering by:
 - Transform query \(b_1 \land ... \land b_m \) into \(\text{yes} \leftarrow b_1 \land ... \land b_m \)
 - Add (temporarily) \(\text{yes} \leftarrow b_1 \land ... \land b_m \) to KB
 - Check if \(\text{yes} \) is a logical consequence of KB
 - This lets us view queries as just finding consequences from a \(KB \)
Queries with Variables

• You might not only want to check if something is true or false, but what value makes it true

KB:

\[
\text{father}(\text{william}, \text{ted})
\]

\[
\text{parent}(X, Y) \leftarrow \text{father}(X, Y)
\]

• Example: \(\text{?parent}(X, \text{ted}) \)
 - Who is Ted’s parent?
 - Could transform this to \(\text{yes} \leftarrow \text{parent}(X, \text{ted}) \)
 - But, lets capture the variables in the body: \(\text{yes}(X) \leftarrow \text{parent}(X, \text{ted}) \)

• An answer is either
 - **instance** of ‘yes’ that is a logical consequence of *KB*: \(\text{yes}(\text{william}) \)
 - or **no** if no instance is a logical consequence of KB
Overview

• Semantics
• Queries

⇒ Proof Procedures

• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Semantics Is Not Enough

• We have KB
 - We know what conclusions are valid to make
 - \(KB \models g \) iff \(g \) is true in all models of \(KB \)
 - Can extend this so user can ask queries with variables as well

• But, don’t yet have a mechanical way of checking if \(KB \models g \)
 - Checking all interpretations is very expensive
 - Can’t just check the user’s intended interpretation
 + Computer can only access the \(KB \)
Proof Procedures

• **Proof**: a mechanically derivable demonstration that a formula logically follows from a KB

• **Proof procedure**: an algorithm that constructs proofs
 - $KB \vdash g$ means g can be derived from KB with the proof procedure

• Proof procedure can be nondeterministic
 - So as to simplify the specification
 - Still need to specify an actual implementation

• Properties of Proof Procedure
 - **Soundness**: if $KB \vdash g$ then $KB \models g$
 - **Completeness**: if $KB \models g$ then $KB \vdash g$

• Terminology:
 - semantic proof: \models, logically follows, logically entails, models
 - syntactic proof: \vdash, derives
Two Types of Proof Procedures

- Bottom-Up Forward-Chaining
- Top-Down Backward-Chaining

KB → Query
Overview

• Semantics
• Queries
• Proof Procedures

⇒ Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Bottom-up Ground Proof Procedure

• For now, only consider ground facts and ground rules
 - no variables

• Bottom-up or forward chaining procedure:
 starts from KB and works towards query

• Forward chaining rule
 - If $h \leftarrow b_1 \land ... \land b_m$ is a clause in the KB
 - and each b_i has been derived
 - then h can be derived

• Forward chaining rule also works if h is a fact in KB ($m = 0$)
 - Lets you derive h

• Call the set of derivables the consequence set (C)
Non-deterministic Specification

- Haven’t specified the exact order that things should be done in
 - What order should we pick clauses from KB to try?
Example

\[a \leftarrow b \land c. \]
\[b \leftarrow d \land e. \]
\[b \leftarrow g \land e. \]
\[c \leftarrow e. \]
\[d. \]
\[e. \]

- What is the consequence set?
Is it Sound?

- Does everything in C logically follow from KB?
- Proof by contradiction: assume $KB \vdash g$ but $KB \not\models g$
 - g is the result of a finite number of derivations
 - Without loss of generality, assume g is first one in derivation such that $KB \not\models g$
 - Now g was derived by a cause $g \leftarrow b_1 \land \ldots \land b_m$ in KB where the b_i’s have already been derived
 - Since g was first bad one, all b_i’s logically follow from KB
 - So $b_1 \land \ldots \land b_m$ logically follows from KB (from definition of \land)
 - $g \leftarrow b_1 \land \ldots \land b_m$ logically follows from KB since it is in the KB
 - Using definition of \leftarrow, can show that g must logically follow from KB
 - Contradiction
Is it Complete?

- Does C have every ground atom that logically follows from KB?
- We need to prove something about consequence sets
- Let C be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same C, no matter what order C was generated
- Define I such that for atom h
 - I(h) is true if h ∈ C
 - Otherwise, I(h) is false
 - I is an interpretation because it defines a subset of ground atoms as being true, and the rest as false
- I is an interpretation, but is it also a model of KB?
 - i.e. for every g ∈ KB, is I(g) true?
• Proof by Contradiction: Let \(g \in KB \) but where \(I(g) \) is false
 - Since \(g \in KB \), \(g \) must have the form \(h \leftarrow b_1 \land \ldots \land b_m \)
 - So \(h \leftarrow b_1 \land \ldots \land b_m \) is false in \(I \)
 + Remember, definition of \(\leftarrow \) comes from Datalog, not \(I \)
 - So \(h \) must be false in \(I \) and \(b_1 \land \ldots \land b_m \) must be true in \(I \)
 - If \(b_1 \land \ldots \land b_m \) is true in \(I \), each individually must be true in \(I \)
 + Remember, definition of \(\land \) comes from Datalog, not \(I \)
 - So, all of the \(b_i \) must be in \(C \) (due to how we defined \(I \))
 - Since all \(b_i \) in \(C \) and \(h \leftarrow b_1 \land \ldots \land b_m \) is in \(KB \)
 bottom up algorithm must have applied this rule and hence \(h \in C \)
 - Hence \(h \) is true in \(I \)
 - Contradiction
Final Step in Completeness Proof

- Let \(g \) be atomic and \(KB \models g \)
 - Need to make sure that \(KB \vdash g \)

- Since \(KB \models g \), \(g \) must be in every model of \(KB \)

- So, it is in the interpretation defined by the Consequence set

- Since \(g \) is atomic and it is true in the interpretation,
 it must be in consequence set

- So \(KB \vdash g \)
Overview

- Semantics
- Queries
- Proof Procedures
- Bottom-up Ground Proof Procedure

\Rightarrow Top-down Ground Proof Procedure
Top-Down Ground Proof Procedure

• Alternative to bottom-up (forward-chaining)
• Top-down (backward-chaining)
 - Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
a_i & \leftarrow b_1 \land \ldots \land b_p \\
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Now for some definitions

- **Answer clause** is \(\text{yes} \leftarrow a_1 \land \ldots \land a_m \)

- **Answer** is answer clause with \(m = 0 \)

- **Derivation** of a query \(?q_1 \land \ldots \land q_k \) from \(KB \) is a sequence of answer clauses \(\gamma_0, \gamma_1, \ldots, \gamma_n \)
 - \(\gamma_0 \) is the answer clause corresponding to the original query
 - \(\gamma_i \) is obtained by resolving \(\gamma_{i-1} \) with a clause in \(KB \)
 - \(\gamma_n \) is the answer

- **Nondeterminism**
 - In choosing which clause from \(KB \) to resolve with
 - Can find all derivations by systematically considering all different choices (see Chapter 4)
Example

- KB
 - $a \leftarrow b \land c.$
 - $b \leftarrow d \land e.$
 - $b \leftarrow g \land e.$
 - $c \leftarrow e.$
 - $d.$
 - $e.$
 - $f \leftarrow a \land g.$
 - $?a.$
Bottom-Up versus Top-Down

KB

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \leftarrow b \land c)</td>
<td>(yes \leftarrow a)</td>
<td>(a \leftarrow b \land c)</td>
</tr>
<tr>
<td>(b \leftarrow d \land e)</td>
<td>(yes \leftarrow b \land c)</td>
<td>(b \leftarrow d \land e)</td>
</tr>
<tr>
<td>(b \leftarrow g \land e)</td>
<td>(yes \leftarrow d \land e \land c)</td>
<td>(d)</td>
</tr>
<tr>
<td>(c \leftarrow e)</td>
<td>(yes \leftarrow e \land c)</td>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
<td>(yes \leftarrow e)</td>
<td>(c \leftarrow e)</td>
</tr>
<tr>
<td>(e)</td>
<td>(yes \leftarrow c)</td>
<td>(c \leftarrow e)</td>
</tr>
<tr>
<td>(f \leftarrow a \land g)</td>
<td>(yes \leftarrow)</td>
<td>(e)</td>
</tr>
</tbody>
</table>

?\(a \)
Bottom-Up versus Top-Down

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
<th>Bottom-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>yes $\leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
<td>$a \in C$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>yes $\leftarrow b \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e,c,d,b}$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>yes $\leftarrow d \land e \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e,c,d}$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>yes $\leftarrow e \land c$</td>
<td>d</td>
<td>$C = {e,c}$</td>
</tr>
<tr>
<td>d</td>
<td>yes $\leftarrow e$</td>
<td>c</td>
<td>$C = {e,c}$</td>
</tr>
<tr>
<td>e</td>
<td>yes $\leftarrow c$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e,c}$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>yes \leftarrow</td>
<td>e</td>
<td>$C = {e}$</td>
</tr>
</tbody>
</table>

?a
Bottom-up versus Top-down

- Any top-down proof can be converted to a bottom-up proof.
- Any bottom-up proof can be converted to a top-down proof.
- So, top-down proof procedure is complete and sound

- There are many other ways of doing proofs
 - e.g. Unit resolution
 - We will explore some of these later in the course
 - But top-down and bottom-up are sufficient for datalog