Overview

⇒ Semantics
• Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Review

• An interpretation maps any clause to either true or false
 - It is a complete mapping

• A model I of KB is an interpretation that maps every clause in KB to true

• $KB \models g$ iff every model of KB makes g true
Example

- **KB:**
 - `female(sally)`
 - `person(X) ← female(X)`

- Prove $KB \models person(sally)$

- What does $KB \models person(sally)$ mean?
 - Means that if interpretation I models KB then it models $person(sally)$
 - Could prove this by checking all interpretations

- Let’s do proof instead
 - Let I be a model of KB, prove that I makes $person(sally)$ true
A Semantic Proof

• Let $I = \{D, \phi, \pi\}$ be a model of $KB = \{\text{female(sally)}\}$

- So $<\phi(sally)> \in \pi(\text{female})$
- Say $\phi(sally) = s$, so $<s> \in \pi(\text{female})$ (1)
- $\text{person}(X) \leftarrow \text{female}(X)$ must be true for I_ρ for any var. assign. ρ (2)

• Consider variable assignment ρ where $\rho(X) = s$

- If $\text{female}(X)$ true for I_ρ then so must $\text{person}(X)$ (from (2)) (3)
- $\rho(X) = s$ and $<s> \in \pi(\text{female})$ so $\text{female}(X)$ is true for I_ρ (4)
- So $\text{person}(X)$ must be true for I_ρ (from (3) and (4))
- $\rho(X) = s$ so $<s> \in \pi(\text{person})$ (5)
- Since $\phi(sally) = s$, $\text{person}(sally)$ is true under I
More on Variables in Clauses (pg. 42)

• Say \(\text{parent}(X, Y) \leftarrow \text{father}(X, Y) \) is in KB
 - Implicit universal quantifiers around it
 - Anytime that \(\text{father}(X, Y) \) is true, so must \(\text{parent}(X, Y) \)

• Say \(\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z) \land \text{parent}(Z, Y) \) in KB
 - This clause is true for all \(X, Y, Z \)
 - \(\forall X Y Z \ (\text{grandfather}(X, Y) \leftarrow \text{father}(X, Z) \land \text{parent}(Z, Y)). \)
 - \(Z \) only appears in the body

• How does \(Z \) work here (variable just in the body)?
 - For any \(X \) and \(Y \), if we find \(Z \) that makes body true, head must be true
 - Now it seems that \(Z \) is just existentially quantified
 + We just need to find one \(Z \) for each \(X \) and \(Y \), not ensure it is true for all \(Z \)
 - \(\forall X Y \ (\text{grandfather}(X, Y) \leftarrow (\exists Z \ \text{father}(X, Z) \land \text{parent}(Z, Y))). \)
Overview

• Semantics

⇒ Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Ground Queries

• A query is a way to ask if a body is a logical consequence of the knowledge base: \(? b_1 \land ... \land b_m\)

• Ground query (no variables) has the answer
 - “yes” if the body is a logical consequence of the KB
 - “no” if the body is not a logical consequence of the KB
 + We do not distinguish between it being false in all models or just some
 + Cannot tell if query is false in the intended interpretation

• Can do query-answering by:
 - Transform query \(b_1 \land ... \land b_m\) into \(yes \leftarrow b_1 \land ... \land b_m\)
 - Add (temporarily) \(yes \leftarrow b_1 \land ... \land b_m\) to KB
 - Check if \(yes\) is a logical consequence of KB
 - This lets us view queries as just finding consequences from a \(KB\)
Queries with Variables

• You might not only want to check if something is true or false, but what value makes it true

KB:

\[\text{father}(\text{william}, \text{ted})\]
\[\text{parent}(X, Y) \leftarrow \text{father}(X, Y)\]

• Example: ?parent(X, ted)
 - Who is Ted’s parent?
 - Could transform this to yes \leftarrow parent(X, ted)
 - But, lets capture the variables in the body: yes(X) \leftarrow parent(X, ted)

• An answer is either
 - instance of ‘yes’ that is a logical consequence of KB: yes(william)
 - or no if no instance is a logical consequence of KB
Overview

• Semantics

• Queries

⇒ Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Semantics Is Not Enough

• We have KB
 - We know what conclusions are valid to make
 - $KB \models g$ iff g is true in all models of KB
 - Can extend this so user can ask queries with variables as well

• But, don’t yet have a mechanical way of checking if $KB \models g$
 - Checking all interpretations is very expensive
 - Can’t just check the user’s intended interpretation
 + Computer can only access the KB
Proof Procedures

• **Proof**: a mechanically derivable demonstration that a formula logically follows from a KB

• **Proof procedure**: an algorithm that constructs proofs
 - $KB \vdash g$ means g can be derived from KB with the proof procedure

• Proof procedure can be nondeterministic
 - So as to simplify the specification
 - Still need to specify an actual implementation

• Properties of Proof Procedure
 - **Soundness**: if $KB \vdash g$ then $KB \models g$
 - **Completeness**: if $KB \models g$ then $KB \vdash g$

• Terminology:
 - semantic proof: \models, logically follows, logically entails, models
 - syntactic proof: \vdash, derives
Two Types of Proof Procedures

- Bottom-Up Forward-Chaining
- Top-Down Backward-Chaining

KB → Query

© P. Heeman, 2020
Overview

• Semantics
• Queries
• Proof Procedures
⇒ Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Bottom-up Ground Proof Procedure

• For now, only consider ground facts and ground rules
 - no variables

• Bottom-up or forward chaining procedure:
 starts from KB and works towards query

• Forward chaining rule
 - If $h \leftarrow b_1 \land \ldots \land b_m$ is a clause in the KB
 - and each b_i has been derived
 - then h can be derived

• Forward chaining rule also works if h is a fact in KB ($m = 0$)
 - Lets you derive h

• Call the set of derivables the consequence set (C)
Non-deterministic Specification

• Haven’t specified the exact order that things should be done in
 - What order should we pick clauses from \(KB \) to try?
Example

\[a \leftarrow b \land c. \]
\[b \leftarrow d \land e. \]
\[b \leftarrow g \land e. \]
\[c \leftarrow e. \]
\[d. \]
\[e. \]

• What is the consequence set?
Is it Sound?

• Does everything in C logically follow from KB?
• Proof by contradiction: assume $KB \vdash g$ but $KB \not\models g$
 - g is the result of a finite number of derivations
 - Without loss of generality, assume g is first one in derivation such that $KB \not\models g$
 - Now g was derived by a cause $g \leftarrow b_1 \land \ldots \land b_m$ in KB where the b_i’s have already been derived
 - Since g was first bad one, all b_i’s logically follow from KB
 - So $b_1 \land \ldots \land b_m$ logically follows from KB (from definition of \land)
 - $g \leftarrow b_1 \land \ldots \land b_m$ logically follows from KB since it is in the KB
 - Using definition of \leftarrow, can show that g must logically follow from KB
 - Contradiction
Is it Complete?

- Does C have every ground atom that logically follows from KB?
- We need to prove something about consequence sets
- Let C be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same C, no matter what order C was generated
- Define I such that for atom h
 - I(h) is true if h ∈ C
 - Otherwise, I(h) is false
 - I is an interpretation because it defines a subset of ground atoms as being true, and the rest as false
- I is an interpretation, but is it also a model of KB?
 - i.e. for every g ∈ KB, is I(g) true?
Proof by Contradiction: Let $g \in KB$ but where $I(g)$ is false
- Since $g \in KB$, g must have the form $h \leftarrow b_1 \wedge ... \wedge b_m$
- So $h \leftarrow b_1 \wedge ... \wedge b_m$ is false in I
 + Remember, definition of \leftarrow comes from Datalog, not I
- So h must be false in I and $b_1 \wedge ... \wedge b_m$ must be true in I
- If $b_1 \wedge ... \wedge b_m$ is true in I, each individually must be true in I
 + Remember, definition of \wedge comes from Datalog, not I
- So, all of the b_i must be in C (due to how we defined I)
- Since all b_i in C and $h \leftarrow b_1 \wedge ... \wedge b_m$ is in KB
 bottom up algorithm must have applied this rule and hence $h \in C$
- Hence h is true in I
- Contradiction
Final Step in Completeness Proof

• Let \(g \) be atomic and \(KB \models g \)
 - Need to make sure that \(KB \vdash g \)

• Since \(KB \models g \), \(g \) must be in every model of \(KB \)

• So, it is in the interpretation defined by the Consequence set

• Since \(g \) is atomic and it is true in the interpretation, it must be in consequence set

• So \(KB \vdash g \)
Overview

• Semantics
• Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
 ⇒ Top-down Ground Proof Procedure
Top-Down Ground Proof Procedure

• Alternative to bottom-up (forward-chaining)
• Top-down (backward-chaining)
 - Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
{yes} & \leftarrow a_1 \land \ldots \land a_m \\
{a_i} & \leftarrow b_1 \land \ldots \land b_p \\
{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Now for some definitions

• **Answer clause** is $\text{yes} \leftarrow a_1 \land \ldots \land a_m$

• **Answer** is answer clause with $m = 0$

• **Derivation** of a query $\text{?}q_1 \land \ldots \land q_k$ from KB is a sequence of answer clauses $\gamma_0, \gamma_1, \ldots, \gamma_n$
 - γ_0 is the answer clause corresponding to the original query
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB
 - γ_n is the answer

• **Nondeterminism**
 - In choosing which clause from KB to resolve with
 - Can find all derivations by systematically considering all different choices (see Chapter 4)
Example

- KB

 $a \leftarrow b \land c$

 $b \leftarrow d \land e$

 $b \leftarrow g \land e$

 $c \leftarrow e$

 d

 e

 $f \leftarrow a \land g$

 ?a.
Bottom-Up versus Top-Down

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>$yes \leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>$yes \leftarrow b \land c$</td>
<td>$a \leftarrow b \land c$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>$yes \leftarrow d \land e \land c$</td>
<td>$b \leftarrow d \land e$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>$yes \leftarrow e \land c$</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>$yes \leftarrow e$</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>$yes \leftarrow c$</td>
<td>$c \leftarrow e$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>$yes \leftarrow$</td>
<td>e</td>
</tr>
</tbody>
</table>

?a
Bottom-Up versus Top-Down

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
<th>Bottom-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>yes $\leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
<td>$a \in C$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>yes $\leftarrow b \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e, c, d, b, a}$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>yes $\leftarrow d \land e \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e, c, d, b}$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>yes $\leftarrow e \land c$</td>
<td>d</td>
<td>$C = {e, c, d}$</td>
</tr>
<tr>
<td>d</td>
<td>yes $\leftarrow e$</td>
<td>c</td>
<td>$C = {e, c}$</td>
</tr>
<tr>
<td>e</td>
<td>yes $\leftarrow c$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e, c}$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>yes \leftarrow</td>
<td>e</td>
<td>$C = {e}$</td>
</tr>
</tbody>
</table>

?a
Bottom-up versus Top-down

• Any top-down proof can be converted to a bottom-up proof.
• Any bottom-up proof can be converted to a top-down proof.
• So, top-down proof procedure is complete and sound

• There are many other ways of doing proofs
 - e.g. Unit resolution
 - We will explore some of these later in the course
 - But top-down and bottom-up are sufficient for datalog