Overview

⇒ Semantics

• Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Review

• An interpretation maps any clause to either true or false
 - It is a complete mapping

• A model I of KB is an interpretation that maps every clause in KB to true

• $KB \models g$ iff every model of KB makes g true
Example

- \(KB: \)
 - \(\text{female}(sally) \)
 - \(\text{person}(X) \leftarrow \text{female}(X) \)

- Prove \(KB \models \text{person}(sally) \)

- What does \(KB \models \text{person}(sally) \) mean?
 - Means that if interpretation \(I \) models \(KB \) then it models \(\text{person}(sally) \)
 - Could prove this by checking all interpretations

- Let’s do proof instead
 - Let \(I \) be a model of \(KB \), prove that \(I \) makes \(\text{person}(sally) \) true
A Semantic Proof

• Let $I = \{D, \phi, \pi\}$ be a model of $KB = \{ \text{female}(sally) \leftarrow \text{person}(X) \leftarrow \text{female}(X) \}$

 - So $<\phi(sally)> \in \pi(\text{female})$
 - Say $\phi(sally) = s$, so $<s> \in \pi(\text{female})$ (1)
 - $\text{person}(X) \leftarrow \text{female}(X)$ must be true for I_ρ for any var. assign. ρ (2)

• Consider variable assignment ρ where $\rho(X) = s$

 - If $\text{female}(X)$ true for I_ρ then so must $\text{person}(X)$ (from (2)) (3)
 - $\rho(X) = s$ and $<s> \in \pi(\text{female})$ so $\text{female}(X)$ is true for I_ρ (4)
 - So $\text{person}(X)$ must be true for I_ρ (from (3) and (4))

 - $\rho(X) = s$ so $<s> \in \pi(\text{person})$ (5)

 - Since $\phi(sally) = s$, $\text{person}(sally)$ is true under I
More on Variables in Clauses (pg. 42)

• Say $parent(X, Y) ← father(X, Y)$ is in KB
 - Implicit universal quantifiers around it
 - Anytime that $father(X, Y)$ is true, so must $parent(X, Y)$

• Say $grandfather(X, Y) ← father(X, Z) ∧ parent(Z, Y)$ in KB
 - This clause is true for all X, Y, Z
 - $∀ X Y Z \ (grandfather(X, Y) ← father(X, Z) ∧ parent(Z, Y))$.
 - Z only appears in the body

• How does Z work here (variable just in the body)?
 - For any X and Y, if we find Z that makes body true, head must be true
 - Now it seems that Z is just existentially quantified
 + We just need to find one Z for each X and Y, not ensure it is true for all Z
 - $∀XY \ (grandfather(X, Y) ← (∃Z \ father(X, Z) ∧ parent(Z, Y))))$.
Overview

• Semantics

⇒ Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure
Ground Queries

• A query is a way to ask if a body is a logical consequence of the knowledge base: $\text{? } b_1 \land ... \land b_m$

• Ground query (no variables) has the answer
 - “yes” if the body is a logical consequence of the KB
 - “no” if the body is not a logical consequence of the KB
 + We do not distinguish between it being false in all models or just some
 + Cannot tell if query is false in the intended interpretation

• Can do query-answering by:
 - Transform query $b_1 \land ... \land b_m$ into $\text{yes }\leftarrow b_1 \land ... \land b_m$
 - Add (temporarily) $\text{yes }\leftarrow b_1 \land ... \land b_m$ to KB
 - Check if yes is a logical consequence of KB
 - This lets us view queries as just finding consequences from a KB
Queries with Variables

- You might not only want to check if something is true or false, but what value makes it true

KB:

\[
\text{father(william, ted)}
\]
\[
\text{parent}(X, Y) \leftarrow \text{father}(X, Y)
\]

- Example: \(?\text{parent}(X, ted) \)
 - Who is Ted’s parent?
 - Could transform this to \(\text{yes} \leftarrow \text{parent}(X, ted) \)
 - But, lets capture the variables in the body: \(\text{yes}(X) \leftarrow \text{parent}(X, ted) \)

- An answer is either
 - **instance** of ‘yes’ that is a logical consequence of **KB**: \(\text{yes}(\text{william}) \)
 - or **no** if no instance is a logical consequence of KB
Overview

• Semantics
• Queries
⇒ Proof Procedures
• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Semantics Is Not Enough

• We have KB
 - We know what conclusions are valid to make
 - $KB \models g$ iff g is true in all models of KB
 - Can extend this so user can ask queries with variables as well

• But, don’t yet have a mechanical way of checking if $KB \models g$
 - Checking all interpretations is very expensive
 - Can’t just check the user’s intended interpretation
 + Computer can only access the KB
Proof Procedures

- **Proof**: a mechanically derivable demonstration that a formula logically follows from a KB
- **Proof procedure**: an algorithm that constructs proofs
 - $KB \vdash g$ means g can be derived from KB with the proof procedure
- Proof procedure can be nondeterministic
 - So as to simplify the specification
 - Still need to specify an actual implementation
- Properties of Proof Procedure
 - *Soundness*: if $KB \vdash g$ then $KB \models g$
 - *Completeness*: if $KB \models g$ then $KB \vdash g$
- Terminology:
 - semantic proof: \models, logically follows, logically entails, models
 - syntactic proof: \vdash, derives
Two Types of Proof Procedures

- Bottom-Up Forward-Chaining
- Top-Down Backward-Chaining
Overview

• Semantics
• Queries
• Proof Procedures

⇒ Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Bottom-up Ground Proof Procedure

• For now, only consider ground facts and ground rules
 - no variables

• Bottom-up or forward chaining procedure:
 starts from KB and works towards query

• Forward chaining rule
 - If $h \leftarrow b_1 \land \ldots \land b_m$ is a clause in the KB
 - and each b_i has been derived
 - then h can be derived

• Forward chaining rule also works if h is a fact in KB ($m = 0$)
 - Lets you derive h

• Call the set of derivables the consequence set (C)
Non-deterministic Specification

• Haven’t specified the exact order that things should be done in
 - What order should we pick clauses from \(KB \) to try?
Example

\begin{align*}
a & \leftarrow b \land c. \\
b & \leftarrow d \land e. \\
b & \leftarrow g \land e. \\
c & \leftarrow e. \\
d. \\
e. \\
\end{align*}

• What is the consequence set?
Is it Sound?

• Does everything in C logically follow from KB?
• Proof by contradiction: assume \(KB \vdash g \) but \(KB \not\models g \)

 - \(g \) is the result of a finite number of derivations

 - Without loss of generality, assume \(g \) is first one in derivation such that \(KB \not\models g \)

 - Now \(g \) was derived by a cause \(g \leftarrow b_1 \land \ldots \land b_m \) in \(KB \) where the \(b_i \)’s have already been derived

 - Since \(g \) was first bad one, all \(b_i \)’s logically follow from \(KB \)

 - So \(b_1 \land \ldots \land b_m \) logically follows from \(KB \) (from definition of \(\land \))

 - \(g \leftarrow b_1 \land \ldots \land b_m \) logically follows from \(KB \) since it is in the \(KB \)

 - Using definition of \(\leftarrow \), can show that \(g \) must logically follow from \(KB \)

 - Contradiction
Is it Complete?

• Does C have every ground atom that logically follows from KB?
• We need to prove something about consequence sets
• Let C be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same C, no matter what order C was generated
• Define I such that for atom h
 - I(h) is true if h ∈ C
 - Otherwise, I(h) is false
 - I is an interpretation because it defines a subset of ground atoms as being true, and the rest as false
• I is an interpretation, but is it also a model of KB?
 - i.e. for every g ∈ KB, is I(g) true?
Proof that Consequence Set is a Model

• Proof by Contradiction: Let $g \in KB$ but where $I(g)$ is false
 - Since $g \in KB$, g must have the form $h \leftarrow b_1 \land \ldots \land b_m$
 - So $h \leftarrow b_1 \land \ldots \land b_m$ is false in I
 + Remember, definition of \leftarrow comes from Datalog, not I
 - So h must be false in I and $b_1 \land \ldots \land b_m$ must be true in I
 - If $b_1 \land \ldots \land b_m$ is true in I, each individually must be true in I
 + Remember, definition of \land comes from Datalog, not I
 - So, all of the b_i must be in C (due to how we defined I)
 - Since all b_i in C and $h \leftarrow b_1 \land \ldots \land b_m$ is in KB
 bottom up algorithm must have applied this rule and hence $h \in C$
 - Hence h is true in I
 - Contradiction
Final Step in Completeness Proof

• Let g be atomic and $KB \models g$
 - Need to make sure that $KB \vdash g$

• Since $KB \models g$, g must be in every model of KB

• So, it is in the interpretation defined by the Consequence set

• Since g is atomic and it is true in the interpretation, it must be in consequence set

• So $KB \vdash g$
Overview

• Semantics
• Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
⇒ Top-down Ground Proof Procedure
Top-Down Ground Proof Procedure

• Alternative to bottom-up (forward-chaining)
• Top-down (backward-chaining)
 - Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
\quad a_i & \leftarrow b_1 \land \ldots \land b_p \\
\quad \text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Now for some definitions

- **Answer clause** is \(\text{yes} \leftarrow a_1 \land \ldots \land a_m \)
- **Answer** is answer clause with \(m = 0 \)
- **Derivation** of a query \(?q_1 \land \ldots \land q_k\) from \(KB \) is a sequence of answer clauses \(\gamma_0, \gamma_1, \ldots, \gamma_n \)
 - \(\gamma_0 \) is the answer clause corresponding to the original query
 - \(\gamma_i \) is obtained by resolving \(\gamma_{i-1} \) with a clause in \(KB \)
 - \(\gamma_n \) is the answer

- **Nondeterminism**
 - In choosing which clause from \(KB \) to resolve with
 - Can find all derivations by systematically considering all different choices (see Chapter 4)
Example

• KB

 $a \leftarrow b \land c.$
 $b \leftarrow d \land e.$
 $b \leftarrow g \land e.$
 $c \leftarrow e.$
 $d.$
 $e.$
 $f \leftarrow a \land g.$
 $?a.$
Bottom-Up versus Top-Down

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>yes $\leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>yes $\leftarrow b \land c$</td>
<td>$a \leftarrow b \land c$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>yes $\leftarrow d \land e \land c$</td>
<td>$b \leftarrow d \land e$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>yes $\leftarrow e \land c$</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>yes $\leftarrow e$</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>yes $\leftarrow c$</td>
<td>$c \leftarrow e$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>yes \leftarrow</td>
<td>e</td>
</tr>
</tbody>
</table>

?a
<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
<th>Bottom-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>$\text{yes} \leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
<td>$a \in C$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>$\text{yes} \leftarrow b \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e,c,d,b,a}$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>$\text{yes} \leftarrow d \land e \land c$</td>
<td>d</td>
<td>$C = {e,c,d,b}$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>$\text{yes} \leftarrow e \land c$</td>
<td>c</td>
<td>$C = {e,c,d}$</td>
</tr>
<tr>
<td>d</td>
<td>$\text{yes} \leftarrow e$</td>
<td>c</td>
<td>$C = {e,c}$</td>
</tr>
<tr>
<td>e</td>
<td>$\text{yes} \leftarrow c$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e,c}$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>$\text{yes} \leftarrow$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e}$</td>
</tr>
<tr>
<td>?a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© P. Heeman, 2020 25 of 26 CS560 Class 03: Top-down Ground Proof Procedure
Bottom-up versus Top-down

• Any top-down proof can be converted to a bottom-up proof.
• Any bottom-up proof can be converted to a top-down proof.
• So, top-down proof procedure is complete and sound

• There are many other ways of doing proofs
 - e.g. Unit resolution
 - We will explore some of these later in the course
 - But top-down and bottom-up are sufficient for datalog