Overview

⇒ Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
Previous Class

• Introduced a task domains: robot delivery and wiring

• Introduced the symbolic approach
 - Symbols have meaning to the knowledge engineer
 - Symbols used to build a knowledge base that computer is told about
 + Facts about the world
 + Rules about the world
 - Computer reasons with the facts and rules to make new conclusions
A Representation and Reasoning System (RRS) is made up of
- Formal language (syntax):
 + Specifies the legal sentences (the range of things that can be said)
- Semantics:
 + Specifies the meaning of the symbols (for your domain)
 + Specifies what is a correct conclusion
- Reasoning theory or proof procedure:
 + Specification of how an answer can be produced
 + Can be nondeterministic

Implementation of an RRS
- Reasoning procedure
 + Resolves nondeterminism of reasoning theory
Different RRS’s

• Different RRS’s
 - With different syntaxes
 + Actually different connectors: ways to build complex expressions
 - Or with different semantics for connectives

• Different RRS’s good for different domains

• The richer the syntax, the more difficult the reasoning procedure

⇒ Choose the simplest RRS possible for your application
Simplifying Assumptions of Initial RRS

• An agent’s knowledge can be usefully described in terms of individuals and relations among individuals

• An agent’s knowledge base consists of definite and positive statements

• The environment is static

• Only a finite number of individuals of interest in the domain

• Each individual can be given a unique name

⇒ Datalog
Overview

• Representation and Reasoning System
⇒ Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
Syntax of Datalog

• Variable
 - starts with upper-case letter

• Constant
 - starts with lower-case letter or is a sequence of digits (numeral)

• Predicate symbol
 - starts with lower-case letter

• Term
 - either a variable or a constant

• Atomic symbol (atom)
 - of the form p or $p(t_1, \ldots t_n)$ where p is a predicate symbol and t_i are terms
More Syntax of Datalog

• Definite Clause
 - either an atomic symbol (a fact) or of the form
 \[a \leftarrow b_1 \land \ldots \land b_m \]

• Query
 - of the form \(?b_1 \land \ldots \land b_m\)

• Knowledge Base
 - set of definite clauses

⇒ Syntax allows us to write sentences about the world
 - Whether sentences are true or not depends on what the symbols mean,
 which will be specified by the semantics
Example

• Knowledge base
 \[
 \text{male(\textit{william})}
 \]
 \[
 \text{male(\textit{george})}
 \]
 \[
 \text{female(\textit{sally})}
 \]
 \[
 \text{father(\textit{william,george})}
 \]
 \[
 \text{father(\textit{george,sally})}
 \]
 \[
 \text{person}(X) \leftarrow \text{female}(X)
 \]
 \[
 \text{person}(X) \leftarrow \text{male}(X)
 \]
 \[
 \text{parent}(X,Y) \leftarrow \text{father}(X,Y)
 \]
 \[
 \text{grandfather}(Z,X) \leftarrow \text{father}(Z,Y) \land \text{parent}(Y,X)
 \]

• What are the constants?
 - What are the predicate symbols?
 - What are the variables?
 - Whether knowledge base is correct depends on semantics
Overview

- Representation and Reasoning System
- Syntax of Datalog
 ⇒ Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
- Two Views of Semantics
Semantics

Semantics concerns two things

• Set of individuals in the domain, and relations between them
 - What individuals and relations you choose depends on what you want to reason about
 - Individuals could even be abstract things like colors, if that is what you want to reason about

• How constants and predicate symbols in the syntax correspond to the individuals and relations in the domain

We call this an interpretation:

• A domain, and a mapping from the syntax to the domain
An interpretation is a triple $I = (D, \phi, \pi)$ where

- D the domain, is a nonempty set. Elements of D are individuals.
- ϕ maps each constant to an element of D.
 Constant c denotes individual $\phi(c)$.
- π maps each n-ary predicate symbol to subset of D^n.
 - Alternatively, can think of π as mapping each tuple D^n to true or false.
 - **NOTE:** it does not map it to a subset of constantsn.
 Common mistake, don’t make it on your homework.
Example Interpretation

• D is the set of people
 William, George, Sally
 - It is the actual people, not the names

• ϕ maps constants of syntax to objects in the domain
 $\phi(\text{william}) = \text{William}$
 ...

• Knowledge Engineer decides D and mapping of all constants to D
• William and George are male, Sally is female

• Let’s have \(\pi \) map
 \[\text{male} \to \{ <\text{William}> , <\text{George}> \} \]
 \[\text{female} \to \{ <\text{Sally}> \} \]

• Knowledge Engineer decides on mapping of predicates
 - Must decide on the mapping for all predicates
 - Hence, must do mapping for \text{male}, even if no facts in \(KB \) about \text{male}

• This is an example of an intended interpretation:
 - The interpretation that the knowledge engineer has in mind when coming up with language and knowledge base
Second Example

- Example: (focus on all interpretations, not just intended one)
 - Language with constants a and b and 1-ary predicate $female(_)$
 - Domain with $D = \{x, y, z\}$
 - How many different ϕ's?
Second Example

- Example: (focus on all interpretations, not just intended one)
 - Language with constants a and b and 1-ary predicate $female(_)$
 - Domain with $D = \{x, y, z\}$
 - How many different ϕ’s?

<table>
<thead>
<tr>
<th>$\phi_i(a)$</th>
<th>$\phi_i(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td></td>
</tr>
<tr>
<td>ϕ_2</td>
<td></td>
</tr>
<tr>
<td>ϕ_3</td>
<td></td>
</tr>
<tr>
<td>ϕ_4</td>
<td></td>
</tr>
<tr>
<td>ϕ_5</td>
<td></td>
</tr>
<tr>
<td>ϕ_6</td>
<td></td>
</tr>
<tr>
<td>ϕ_7</td>
<td></td>
</tr>
<tr>
<td>ϕ_8</td>
<td></td>
</tr>
<tr>
<td>ϕ_9</td>
<td></td>
</tr>
</tbody>
</table>
Example Continued

• How many π’s?
• How many π’s?

<table>
<thead>
<tr>
<th>$x \in \pi_i(\text{female})$</th>
<th>$y \in \pi_i(\text{female})$</th>
<th>$z \in \pi_i(\text{female})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• How many different interpretations are there altogether (different combinations of ϕ and π)?
Determining Truth of Ground Atoms in I

• Ground atom has no variables

• \(p(t_1, ..., t_n) \) maps to true if \((\phi(t_1), ...\phi(t_n)) \in \pi(p)\)
 otherwise to false

• What does \(\text{male}(\text{george}) \) map to?
 - \(\phi(\text{george}) = \text{George} \)
 - \(\pi(\text{male}) = \{<\text{William}>, <\text{George}>\} \)
 - \(<\text{George}> \in \{<\text{William}>, <\text{George}>\} \)
 - So it maps to true

• For predicates without arguments
 \(\pi(p) \) is either the set with the empty tuple \(\{<>\} \) or it is empty \(\{\} \)

⇒ Semantics of Ground Atoms comes from interpretation
Semantics of Connectives

• Still need to specify what ‘∧’ and ‘←’ mean

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p ∧ q</th>
<th>p ← q</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- Nota bene!
 + p ← q is true when both p and q are false
 + p ∧ q doesn’t always correspond to ‘english’ meaning

• Thus h ← b₁ ∧ ... ∧ bₘ is false in interpretation I if h is false in I and each bᵢ is true in I

⇒ Semantics of ‘∧’ and ‘←’ part of Datalog
Example

• Is \(\text{male(george)} \land \text{female(sally)} \) true in \(I \)?

• Is \(\text{male(george)} \leftarrow \text{female(sally)} \) true in \(I \)?

• Is \(\text{male(george)} \leftarrow \text{female(william)} \) true in \(I \)?

• Is \(\text{female(george)} \leftarrow \text{male(william)} \) true in \(I \)?
Limitations of Datalog

\texttt{male}(\texttt{george}).
\texttt{female}(\texttt{sally}).

\textellipsis

- Even if every object is male or female, both predicates needed
 - Datalog does not include an operator that means negation
- Cannot write a rule that ensures just one of \texttt{male} and \texttt{female} is true for any person
 - Up to knowledge engineer to ensure each person is just one of them
 - More expressive formalisms can handle this (negative knowledge)
Overview

- Representation and Reasoning System
- Syntax of Datalog
- Semantics of Datalog
 ⇒ Adding Variables to Semantics
- Models
- Logical Consequence
- Two Views of Semantics
Semantics & Variables

• How do we interpret clauses such as
 \(\text{person}(X) \leftarrow \text{female}(X) \)

• Clause is true if it is true for all values of \(X \)
 - \(\text{person}(X) \) must be true whenever \(\text{female}(X) \) is true
 - Remember, knowledge engineer had to specify mapping for all predicates, even room
 - \(\pi(\text{female}) \subseteq \pi(\text{person}) \)

• It really has a universal quantifier
 - For all \(X \) \(\text{female}(X) \leftarrow \text{person}(X) \)

• So, variables have an implicit universal quantifier over the clause
Variable Assignment: Formal Definition

• Define a variable assignment ρ
 - Maps each variable to some object in the domain

• Together ρ and ϕ assign each term to some object in the domain

• Together ρ and interpretation I map every clause to true or false
 + Even ungrounded ones

• Now we can say:
 - A clause is true in an interpretation if it is true for all variable assignments
Example

• Interpretation I
 - $\pi(male) = \{<William>, <George>\}$
 - $\pi(female) = \{<Sally>\}$
 - $\pi(person) = \{<William>, <George>, <Sally>\}$

• Are the following true?
 $person(X) \leftarrow male(X)$
 $person(X) \leftarrow female(X)$
 $male(X) \land female(X)$
 $male(X) \lor female(X)$
 $person(X) \leftarrow female(X) \land male(\text{william})$
Overview

- Representation and Reasoning System
- Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics

⇒ Models

- Logical Consequence
- Two Views of Semantics
Sets of Clauses

• A set of clauses is true in an interpretation if each clause is true in the interpretation
 - Note that we universally quantify for the variables over each clause
 - In other words, if two clauses use the same variables, it is the same as if they used different variables

 \[
 \begin{align*}
 person(X) & \leftarrow male(X) \\
 parent(X,Y) & \leftarrow father(X,Y) \\
 grandfather(Z,X) & \leftarrow father(Z,Y) \land parent(Y,X)
 \end{align*}
 \]

© P. Heeman, 2020
• A model of a set of clauses is an interpretation in which all the clauses are true
 - Start with KB and look at what interpretations can be true

• Example \(KB \):
 \[p \leftarrow q. \]
 \[q. \]

<table>
<thead>
<tr>
<th></th>
<th>(\pi(p))</th>
<th>(\pi(q))</th>
<th>(\pi(p \leftarrow q))</th>
<th>Model of KB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>TRUE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_3)</td>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_4)</td>
<td>FALSE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example with constants

• Example: (focus on all interpretations, not just intended one)
 • Language with constants a and b and 1-ary predicate $girl(_)$
 • Domain with $D = \{x, y, z\}$
 • 9 ϕ’s and 8 π’s, so 72 interpretations

• How many models of $KB = \{girl(a), girl(b)\}$?
 (Checking each would take too long, so lets break down into subcases)
 - Case 1: $\phi_i(a) = \phi_i(b)$
 • How many of the 9 ϕ_i’s have $\phi_i(a) = \phi_i(b)$
 • When $\phi_i(a) = \phi_i(b) = x$, which π_i’s make KB true?
 • So how many models with $\phi_i(a) = \phi_i(b)$
 - Case 2: $\phi_i(a) \neq \phi_i(b)$
 • How many of the 9 ϕ?
 • When $\phi_i(a) = x$ and $\phi_i(b) = y$, which π’s make the KB true?
 • So how many models with $\phi_i(a) \neq \phi_i(b)$?
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
⇒ Logical Consequence
• Two Views of Semantics
Logical Consequence

• If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
 - This tells us that our KB, by its definition, always forces g to be true.
 - Other terms that mean same thing:
 - g logically follows from KB
 - KB entails g

• That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

• $KB \not\models g$ if g is not a logical consequence of KB
Example Revisited

• KB:

 $p \leftarrow q.$

 $q.$

<table>
<thead>
<tr>
<th>$\pi(p)$</th>
<th>$\pi(q)$</th>
<th>$\pi(p \leftarrow q)$</th>
<th>model of KB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Does $KB \models p$?
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence

⇒ Two Views of Semantics
User’s View of Semantics

• Choose a task domain: intended interpretation

• Associate constants with individuals you want to name

• For each relation you want to represent, associate a predicate symbol in the language

• Tell the system clauses that are true in the intended interpretation: *axiomatizing the domain*
 - hopefully you tell it enough knowledge about the domain so that it can conclude everything you want it to

• Ask questions about your domain
Computer’s view of semantics

• Computer given the knowledge base
 - Computer doesn’t have access to the intended interpretation

• User asks it a question \(g \)
 - Computer should answer true if \(KB \models g \)
 + \(g \) is true in all models, so is true in user’s intended interpretation
 - Otherwise, computer should answer “I don’t know”
 + There is at least one model in which \(g \) is false
 + Note \(g \) might have been true in user’s intended interpretation. In this case, user didn’t have enough clauses in the KB to sufficiently narrow down the models

• Aside: computer could answer the question by enumerating over all of the possible interpretations (model checking)
 - But number of interpretations grows quickly!!
Summary of Semantics

• User has intended interpretation
 But just tells the computer a small set of facts that hopefully adequately captures the user’s intended interpretation

• Computer answers true if all interpretations that make KB true (models) make the question true
 - Now we have specs for the computer’s reasoning algorithm
 - It should answer yes if $KB \models q$, other answer don’t know