⇒ Representation and Reasoning System

- Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
- Two Views of Semantics
Previous Class

• Introduced a task domains: robot delivery and wiring
• Introduced the symbolic approach
 - Symbols have meaning to the knowledge engineer
 - Symbols used to build a knowledge base that computer is told about
 + Facts about the world
 + Rules about the world
 - Computer reasons with the facts and rules to make new conclusions
A Representation and Reasoning System (RRS) is made up of
- Formal language (syntax):
 + Specifies the legal sentences (the range of things that can be said)
- Semantics:
 + Specifies the meaning of the symbols (for your domain)
 + Specifies what is a correct conclusion
- Reasoning theory or proof procedure:
 + Specification of how an answer can be produced
 + Can be nondeterministic

Implementation of an RRS
- Reasoning procedure
 + Resolves nondeterminism of reasoning theory
Different RRS’s

- Different RRS’s
 - With different syntaxes
 - Actually different connectors: ways to build complex expressions
 - Or with different semantics for connectives

- Different RRS’s good for different domains

- The richer the syntax, the more difficult the reasoning procedure

⇒ Choose the simplest RRS possible for your application
Simplifying Assumptions of Initial RRS

• An agent’s knowledge can be usefully described in terms of individuals and relations among individuals

• An agent’s knowledge base consists of definite and positive statements

• The environment is static

• Only a finite number of individuals of interest in the domain

• Each individual can be given a unique name

⇒ Datalog
Overview

- Representation and Reasoning System
- ⇒ Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
- Two Views of Semantics
Syntax of Datalog

- **Variable**
 - starts with upper-case letter

- **Constant**
 - starts with lower-case letter or is a sequence of digits (numeral)

- **Predicate symbol**
 - starts with lower-case letter

- **Term**
 - either a variable or a constant

- **Atomic symbol (atom)**
 - of the form p or $p(t_1, \ldots t_n)$ where p is a predicate symbol and t_i are terms
More Syntax of Datalog

• Definite Clause
 - either an atomic symbol (a fact) or of the form
 \[a ← b_1 ∧ ... ∧ b_m \]

• Query
 - of the form \(?b_1 ∧ ... ∧ b_m\)

• Knowledge Base
 - set of definite clauses

⇒ Syntax allows us to write sentences about the world
 - Whether sentences are true or not depends on what the symbols mean,
 which will be specified by the semantics
Example

- Knowledge base

 \[
 \begin{align*}
 \text{male}(\text{william}) \\
 \text{male}(\text{george}) \\
 \text{female}(\text{sally}) \\
 \text{father}(\text{william}, \text{george}) \\
 \text{father}(\text{george}, \text{sally}) \\
 \text{person}(X) \leftarrow \text{female}(X) \\
 \text{person}(X) \leftarrow \text{male}(X) \\
 \text{parent}(X, Y) \leftarrow \text{father}(X, Y) \\
 \text{grandfather}(Z, X) \leftarrow \text{father}(Z, Y) \land \text{parent}(Y, X)
 \end{align*}
 \]

- What are the constants?

 - What are the predicate symbols?

 - What are the variables?

 - Whether knowledge base is correct depends on semantics
Overview

• Representation and Reasoning System
• Syntax of Datalog
⇒ Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
Semantics

Semantics concerns two things

• Set of individuals in the domain, and relations between them
 - What individuals and relations you choose depends on what you want to reason about
 - Individuals could even be abstract things like colors, if that is what you want to reason about

• How constants and predicate symbols in the syntax correspond to the individuals and relations in the domain

We call this an interpretation:

• A domain, and a mapping from the syntax to the domain
Interpretation

An interpretation is a triple $I = (D, \phi, \pi)$ where

• D the domain, is a nonempty set. Elements of D are individuals

• ϕ maps each constant to an element of D
 Constant c denotes individual $\phi(c)$.

• π maps each n-ary predicate symbol to subset of D^n
 - Alternatively, can think of π as mapping each tuple D^n to true or false
 - **NOTE:** it does not map it to a subset of constantsn
 Common mistake, don’t make it on your homework
Example Interpretation

• D is the set of people
 William, George, Sally
 - It is the actual people, not the names

• ϕ maps constants of syntax
to objects in the domain
 $\phi(william) = William$
 ...

• Knowledge Engineer decides D
 and mapping of all constants to D
Example Continued

• William and George are male, Sally is female

• Lets have π map

 $male$ to $\{\langle William \rangle, \langle George \rangle\}$
 $female$ to $\{\langle Sally \rangle\}$

• Knowledge Engineer decides on mapping of predicates
 - Must decide on the mapping for all predicates
 - Hence, must do mapping for $male$, even if no facts in KB about $male$

• This is an example of an *intended interpretation*:
 - The interpretation that the knowledge engineer has in mind when coming up with language and knowledge base
Second Example

• Example: (focus on all interpretations, not just intended one)
 - Language with constants a and b and 1-ary predicate $female(_)$
 - Domain with $D = \{x, y, z\}$
 - How many different ϕ’s?
Second Example

- Example: (focus on all interpretations, not just intended one)
 - Language with constants a and b and 1-ary predicate $female(_)$
 - Domain with $D = \{x, y, z\}$
 - How many different ϕ’s?

<table>
<thead>
<tr>
<th></th>
<th>$\phi_i(a)$</th>
<th>$\phi_i(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Continued

• How many π’s?
• How many π’s?

<table>
<thead>
<tr>
<th>x ∈ π_i(female)</th>
<th>y ∈ π_i(female)</th>
<th>z ∈ π_i(female)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• How many different interpretations are there altogether (different combinations of φ and π)?
Determining Truth of Ground Atoms in I

• Ground atom has no variables

• \(p(t_1, ..., t_n) \) maps to true if \((\phi(t_1), ..., \phi(t_n)) \in \pi(p)\) otherwise to false

• What does \(\text{male(george)} \) map to?
 - \(\phi(\text{george}) = \text{George} \)
 - \(\pi(\text{male}) = \{<\text{William}>, <\text{George}>\} \)
 - \(<\text{George}> \in \{<\text{William}>, <\text{George}>\} \)
 - So it maps to true

• For predicates without arguments
 \(\pi(p) \) is either the set with the empty tuple \(\{<>()\} \) or it is empty \(\{\} \)

⇒ Semantics of Ground Atoms comes from interpretation
Semantics of Connectives

• Still need to specify what ‘∧’ and ‘←’ mean

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$p \land q$</td>
<td>$p \leftarrow q$</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- Nota bene!
 + $p \leftarrow q$ is true when both p and q are false
 + $p \land q$ doesn’t always correspond to ‘english’ meaning

• Thus $h \leftarrow b_1 \land ... \land b_m$ is false in interpretation I
 if h is false in I and each b_i is true in I

⇒ Semantics of ‘∧’ and ‘←’ part of Datalog
Example

• Is \(\text{male(george)} \land \text{female(sally)} \) true in \(I \)?

• Is \(\text{male(george)} \leftarrow \text{female(sally)} \) true in \(I \)?

• Is \(\text{male(george)} \leftarrow \text{female(william)} \) true in \(I \)?

• Is \(\text{female(george)} \leftarrow \text{male(william)} \) true in \(I \)?
Limitations of Datalog

\begin{itemize}
 \item Even if every object is male or female, both predicates needed
 \begin{itemize}
 \item Datalog does not include an operator that means negation
 \end{itemize}
 \item Cannot write a rule that ensures just one of male and female is true for any person
 \begin{itemize}
 \item Up to knowledge engineer to ensure each person is just one of them
 \item More expressive formalisms can handle this (negative knowledge)
 \end{itemize}
\end{itemize}
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
⇒ Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
• How do we interpret clauses such as
 $person(X) \leftarrow \text{female}(X)$

• Clause is true if it is true for all values of X
 - $person(X)$ must be true whenever $\text{female}(X)$ is true
 - Remember, knowledge engineer had to specify mapping for all predicates, even room
 - $\pi(\text{female}) \subseteq \pi(\text{person})$

• It really has a universal quantifier
 - For all X $\text{female}(X) \leftarrow \text{person}(X)$

• So, variables have an implicit universal quantifier over the clause
Variable Assignment: Formal Definition

- Define a variable assignment ρ
 - Maps each variable to some object in the domain
- Together ρ and ϕ assign each term to some object in the domain
- Together ρ and interpretation I map every clause to true or false
 + Even ungrounded ones
- Now we can say:
 - A clause is true in an interpretation if it is true for all variable assignments
Example

- Interpretation I
 - \(\pi(\text{male}) = \{<\text{William}>, <\text{George}>\} \)
 - \(\pi(\text{female}) = \{<\text{Sally}>\} \)
 - \(\pi(\text{person}) = \{<\text{William}>, <\text{George}>, <\text{Sally}>\} \)

- Are the following true?
 - \(\text{person}(X) \leftarrow \text{male}(X) \)
 - \(\text{person}(X) \leftarrow \text{female}(X) \)
 - \(\text{male}(X) \land \text{female}(X) \)
 - \(\text{male}(X) \lor \text{female}(X) \)
 - \(\text{person}(X) \leftarrow \text{female}(X) \land \text{male}(\text{william}) \)
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
 ⇒ Models
• Logical Consequence
• Two Views of Semantics
• A set of clauses is true in an interpretation if each clause is true in the interpretation.
 - Note that we universally quantify for the variables over each clause.
 - In other words, if two clauses use the same variables, it is the same as if they used different variables.

\[
\begin{align*}
\text{person}(X) & \leftarrow \text{male}(X) \\
\text{parent}(X, Y) & \leftarrow \text{father}(X, Y) \\
\text{grandfather}(Z, X) & \leftarrow \text{father}(Z, Y) \land \text{parent}(Y, X)
\end{align*}
\]
• A model of a set of clauses is an interpretation in which all the clauses are true
 - Start with KB and look at what interpretations can be true

• Example KB:
 \[p \leftarrow q, \]
 \[q. \]

<table>
<thead>
<tr>
<th>(\pi(p))</th>
<th>(\pi(q))</th>
<th>(\pi(p \leftarrow q))</th>
<th>Model of KB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© P. Heeman, 2020
Example with constants

• Example: (focus on all interpretations, not just intended one)
 + Language with constants a and b and 1-ary predicate $girl(_)$
 + Domain with $D = \{x, y, z\}$
 + 9 ϕ’s and 8 π’s, so 72 interpretations

• How many models of $KB = \{girl(a), girl(b)\}$?
 (Checking each would take too long, so let’s break down into subcases)
 - Case 1: $\phi_i(a) = \phi_i(b)$
 + How many of the 9 ϕ_i’s have $\phi_i(a) = \phi_i(b)$
 + When $\phi_i(a) = \phi_i(b) = x$, which π_i’s make KB true?
 + So how many models with $\phi_i(a) = \phi_i(b)$
 - Case 2: $\phi_i(a) \neq \phi_i(b)$
 + How many of the 9 ϕ?
 + When $\phi_i(a) = x$ and $\phi_i(b) = y$, which π’s make the KB true?
 + So how many models with $\phi_i(a) \neq \phi_i(b)$?
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models

⇒ Logical Consequence
• Two Views of Semantics
Logical Consequence

• If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.

 - This tells us that our KB, by its definition, always forces g to be true.
 - Other terms that mean same thing:
 - g logically follows from KB
 - KB entails g

• That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

• $KB \not\models g$ if g is not a logical consequence of KB
Example Revisited

• KB:

 \[
 p \leftarrow q.
 \]

 \[
 q.
 \]

 \[
 \begin{array}{ccc}
 \pi(p) & \pi(q) & \pi(p \leftarrow q) \\
 I_1 & \text{TRUE} & \text{TRUE} \\
 I_2 & \text{TRUE} & \text{FALSE} \\
 I_3 & \text{FALSE} & \text{TRUE} \\
 I_4 & \text{FALSE} & \text{FALSE} \\
 \end{array}
 \]

 [model of KB?]

• Does $KB \models p$?
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models

⇒ Two Views of Semantics
User’s View of Semantics

• Choose a task domain: intended interpretation
• Associate constants with individuals you want to name
• For each relation you want to represent, associate a predicate symbol in the language
• Tell the system clauses that are true in the intended interpretation: *axiomatizing the domain*
 - hopefully you tell it enough knowledge about the domain so that it can conclude everything you want it to
• Ask questions about your domain
Computer’s view of semantics

• Computer given the knowledge base
 - Computer doesn’t have access to the intended interpretation

• User asks it a question g
 - Computer should answer true if $KB \models g$
 + g is true in all models, so is true in user’s intended interpretation
 - Otherwise, computer should answer “I don’t know”
 + There is at least one model in which g is false
 + Note g might have been true in user’s intended interpretation. In this case, user didn’t have enough clauses in the KB to sufficiently narrow down the models

• Aside: computer could answer the question by enumerating over all of the possible interpretations (model checking)
 - But number of interpretations grows quickly!!
Summary of Semantics

• User has intended interpretation
 But just tells the computer a small set of facts that hopefully adequately captures the user’s intended interpretation

• Computer answers true if all interpretations that make KB true (models) make the question true
 - Now we have specs for the computer’s reasoning algorithm
 - It should answer yes if $KB \models q$, other answer don’t know