• Slack Channel - where you can ask questions
 + ohsu-cslu.slack.com #cs560
• Sakai
 + Used to submit homeworks to me
 + Private announcements I do not want to share with the world
 + Has link to WebEx
 + Will be recorded incase you miss a lecture
 + Recordings will be on Webex, might take 24 hours
 + Will be used for office hours as well
• Course website: cslu.ohsu.edu/~heeman/cs560
 + Lecture slides: 1-up and 2-up
 + Homework assignments
• Email: heemanp@ohsu.edu
 + Communicating with me
 + Can also use messaging in slack
Textbook

• Textbook:
 Computational Intelligence: A Logical Approach
 David Poole, Alan Mackworth and Randy Goebel
 Oxford University Press. 1998

• Optional Resource:
 Knowledge Representation and Reasoning
 Ronald J. Brachman and Hector J. Levesque
 Morgan Kaufmann. 2004
Overview

⇒ Agent Approach
• Symbolic Reasoning
• Example Problems
• Bookkeeping
Artificial Intelligence

• Goal:
 - Understand how intelligent behavior is possible
 - i.e. Come up with a theory that explains intelligent behavior

• Methodology:
 - Design, build and experiment with computation systems that perform tasks commonly viewed as intelligent

• Flying Analogy
 - First approach:
 + Dissect known flying animals
 + Figure out what they have in common
 + Flapping of wings made of some structure covered with feathers
 - A better approach:
 + Understand principles of flight
 + Don’t restrict to just natural occurrences of flight
 + Construct objects that embody hypothesized principles

© P. Heeman, 2020
Mapping Inputs to Outputs

• Many intelligent tasks involve mapping from current sensor values to output
 - Identifying tumor
 - Call routing
 - Image labeling

• Mapping can be done by neural network, SVM, decision tree, etc
 - Use lots of training data that maps inputs to outputs
 - Use probabilistic models to give best answer
Overview

• Agent Approach
 ⇒ Symbolic Reasoning
• Example Problems
• Bookkeeping
Limitation of Mapping Approach

• Not enough training data
 - Impossible to get training data: want to detect burglar in my house through my smart home sensors

• Might be interested in the internals of the model
 - Making the reasoning understandable to a person

• Might need to incorporate well-known knowledge rather than learn from scratch
 - e.g., Books are physical things, and physical things have a weight
 - e.g., If someone asks me a question, I should answer it
Declarative Approach: Symbols

• Model knowledge with symbols
 - Symbols will have meaning to us (us = the designer)
 - Meaning of symbols should be unambiguous, unlike English

• Need to express complex relations with minimum of symbols
 - Need language for representing the internal state

• Example
 \[\text{have(milk)} \land \text{have(cereal)} \land \text{want(sugar)} \]
 - \(A \land B \) means \(A \) and \(B \) are both true for the agent
 - \(\text{have}(X) \) means agent has \(X \) in its procession
 - \(\text{want}(X) \) means agent wants \(X \) in its procession
 - Don’t need a symbol such as \(\text{havemilkhavecerealwantsugar} \)
Declarative Approach: Rules

• Not only can facts be represented with symbols
 But also more general knowledge can be represented

• Examples:
 - having cereal means having food
 \[\text{have(cereal)} \rightarrow \text{have(food)} \]
 + Use additional connector in representing rules
 - if X is connected to Y and there is a path from Y to Z,
 then there is a path from X to Z
 \[\text{connected}(X,Y) \land \text{path}(Y,Z) \rightarrow \text{path}(X,Z) \]
 + Use tokens that start with an uppercase letter for variables
 - if X is connected to Y, then there is a path between them
 \[\text{connected}(X,Y) \rightarrow \text{path}(X,Y) \]
Declarative Approach: Reasoning Algorithm

- Rules encode how new symbols are created from existing ones
- From rules and facts, we should be able to make conclusions that follow from internal state
 - Facts that are not explicitly represented
 - Assumptions that seem reasonable
 - Plans of actions
 - Action to perform right now
- Reasoning algorithm
 - Makes conclusions from rules and facts
Declarative Approach

• Intelligence is in
 - Having an appropriate language for representing internal state
 - Being able to reason about symbols to form new symbols

• Knowledge engineer:
 - Decides the set of facts and rules for a particular domain

• Programmer:
 - Constructs algorithms that can take arbitrary sets of facts and rules to make conclusions
 - Can reuse algorithm over and over again for any domain
Fundamental Issues

• What are good languages for representing
 - the facts of an agent’s internal state?
 - the rules that define the agent’s reasoning?

• What are good algorithms that can produce the conclusions that correspond to reasoning?
 - What do we mean by a ‘good’ algorithm?
 - What constraints are needed on the language that allow good algorithms?
Overview

• Agent Approach
• Symbolic Reasoning
⇒ Example Problems
• Bookkeeping
Delivery Robot

- Robut needs to know
 - layout of space
 - where things are
 - which doors are open
- Needs to reason about
 - How to get from one point to another
 - Delivering multiple package
 + Can only carry one package at a time?
- What is a good way of representing that knowledge?
 - How do we specify what we want to reason about?
 - How do we the reasoning?
Wiring

• Needs to know
 - What each device is
 - What is connected to what
 - Whether each switch is on
 - Whether each circuit breaker is on
 - Whether each light is on

• Needs to reason about
 - How to turn on a light
 - Whether there is a fault in the system
 + And where it is likely to be

• What is a good way of representing that knowledge?
 - How do we specify what we want to reason about?
 - How do we do the reasoning?
Overview

• Agent Approach
• Symbolic Reasoning
• Example Problems
⇒ Bookkeeping
Course Outline

- Knowledge and Reasoning
 Datalog: Syntax, Semantics, Inference
 Search procedures
 Representing knowledge

- Richer formalisms
 Reasoning about Equality
 Integrity constraints
 Disjunctive knowledge
 Quantification
 First order predicate logic

- Actions & Planning
 Agents might have goals, have knowledge about actions

- Non-monotonic Reasoning
 Making assumptions and learning new information

- Belief and Knowledge
 Representing and reasoning about beliefs/knowledge of other agents

- Building Agents
 Tie together concepts into a system

© P. Heeman, 2020
Grading

Assignments 50%
Midterm 25%
Final 25%

• Course website: cslu.ohsu.edu/~heeman/cs560

• Slack channel
Tcl versus Python

- In the past, I used Tcl for homeworks
 - Tcl is not as commercially used as Python
 - Tcl has some weird idiosyncrasies
 + Very picky about tokening
 + Hard to differentiate between a token and a list with one token

- Started using Python for homeworks a few years ago
 - Most of you already know Python
 - Can further brush up on your Python skills
 - Might be a few artifacts of Tcl left in the homework assignments
Homework

• Homework usually given out Monday by 11:55pm
 - Should have it done by Friday at 11:55pm
 + But not officially due till Saturday at 11:55pm
 - Can have an extension on one homework
 - Can always ask me for another extension

• Homework must be submitted through Sakei
 - If you have problems, email it to me heemanp@ohsu.edu
 - Single pdf with your answers on it
 + Sample homework on the website
 + Homework should be typeset
 + Can include pictures of hand-drawn solutions taken with cellphone
 - Pdf should include relevant code as well
 + You need to typeset it so that it fits horizontally and vertically
- If your solution does not work, you need to say so
 + Failure to disclose will result in an extra penalty
- Submit your code as a single python file and/or prolog file
Critique

• Answer key given out via Sakai when you submit your answers
 - On honor system not to share it, nor post questions about the answers

• Have until Sunday at 11:55pm to submit a critique
 - Explain what you did wrong, and why you made that mistake
 - Worth up to half the marks that you lost
 + Really good explanations might even get more
 - Should show that you reviewed and understood answer key and understood whether your answer was correct
 - See sample homework for how to format this
Academic Integrity

• You can do the homeworks with your colleagues
 - But, you cannot bring any part of your homework into the meeting
 - You cannot bring anything written out of your meeting

• After the meeting, you rehash the solution from scratch
 If you can do this, then you have learned,
 Which is the point of taking the course.

• Corollary
 - Unless both people have photographic memories,
 homework assignments should look different
Reading Assignments

• We will be following the textbook closely
• You are responsible for material in the textbook
• Reading assignments are posted on the course website
 - Read chapter 1, 2.1-2.5 for next class