Modal Logic

- Modal operator operates on formulas (sentences in a logic)
- Can be used for expressing belief
 - So system can reason about what a person m believes
 \[\text{B}_m(\text{raining}) \]
 \[\text{B}_m(\text{raining} \rightarrow \text{wet}) \]
 - What should we be able to conclude?
- Can be used for expressing wants (user m’s goals)
 \[\text{Want}_m(\text{cleandishes}) \]
 \[\text{cleandishes} \rightarrow \text{cleaningthem} \]
- Can be used for expressing possibility
 - System can reason about what is possible
 \[\text{possibly}(\text{raining}) \]
 \[\text{raining} \rightarrow \text{wet} \]

Possible Worlds
- Each world is like an interpretation
 - Full assignment specifying everything as either true or false
- Unlike an interpretation, can have multiple worlds with the same truths
- But there is structure between the worlds
 - Accessibility relation between worlds w_iRw_j
 - $B\phi$ is true in world w if ϕ is true in all worlds w' such that wRw'
 + m is actually in world w but might not know which world they are in.
Comparison to Datalog/FOPC

- Semantics of FOPC can be thought of as possible worlds
 - Intended interpretation is w_0
 - All models of the KB w' are accessible from w_0: w_0Rw'
 + Including the intended interpretation: w_0Rw_0
- For modal logic
 - There is a real world w_0 that the agent knows it is in (assumed to have complete knowledge)
 - Accessibility relation is not just from the initial world w_0
 + Will allow us to model nested modal operators: $bel(bel(raining))$
 - Might not include w_0Rw_0
 + Agents might have incorrect beliefs
 - Worlds (interpretation) can be repeated, but with different accessibility relations

Overview

⇒ Omnipotent
- Model Operator Axioms
- Syntactic Proofs
- Constants and Quantifiers
Epistemic Necessitation

- Does the agent know all necessary truths?
- Example:
 - DeMorgan’s law is always true (due to semantics of \land, \lor, and \neg)
 - $\neg(\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi)$
 - So it is true in every world
 - So it is true in every accessible world from any world
 - So $B(\neg(\phi \land \psi) \leftrightarrow (\neg \phi \lor \neg \psi))$ (ϕ and ψ are variables over formulas)
 - Possible worlds semantics is forcing us to make all tautologies true of modal operators
- Can be written as: If $\vdash \phi$ then $\vdash B\phi$
 - This is not the same as $\phi \rightarrow B\phi$
 - That is saying that the agent believes everything that is true in the world
 - If that was true, modal operator would not be very useful

Distribution Axiom

- If $B\phi$ and $B(\phi \rightarrow \psi)$ does $B\phi$???

- So agents believe all of the consequences of their beliefs
 - This is forced by the possible worlds semantics
- Possible world semantics is forcing agents to believe all tautologies and logical consequences of their beliefs
 - Not entirely realistic for human agents
- This can equivalently be written as $B(\phi \rightarrow \psi) \rightarrow (B\phi \rightarrow B\psi)$
 - Can distribute B over implication
Properties on R

- Depending on what B is modeling, you might want R to have certain properties
 - Reflexive: for all w, wRw
 - Symmetric: if w_1Rw_2 then w_2Rw_1
 - Transitive: if w_1Rw_2 and w_2Rw_3 then w_1Rw_3
 - Serial: for all w_1 there exists w_2 s.t. w_1Rw_2
- R is euclidean if R has what two properties?
Knowledge Axiom

• $B\phi \rightarrow \phi$ Everything that user believes is true
 - Which is why it is called the knowledge axiom
 - Not usually used for belief, but is used for knowledge

• Consider if R is reflexive: wRw is true for every world
 - Means that $B\phi$ is only true if ϕ is true in the current world
 + Person’s beliefs (+ve and -ve) are subset of what is true in current world
 - So if R is reflexive than the knowledge axiom holds (not vice versa)

Positive-Introspection Axiom

• $B\phi \rightarrow B(B\phi)$
 - If a user believes something, the user believes that they believe it

• If R is transitive: if w_1Rw_2 and w_2Rw_3 then w_1Rw_3
 - Positive-Introspection Axiom holds
 - Proof?
Negative Introspection Axiom

- $\neg B\phi \rightarrow B(\neg B\phi)$
 - If you do not believe something, you believe you do not believe it

- Follows if R is eclidean
 - if $w_1 R w_2$ and $w_1 R w_3$ then $w_2 R w_3$

Different Combinations

- Axioms:
 - Epistemic Neccessitation
 - Distribution Axiom
 - Knowledge Axiom
 - Positive Introspection Axiom
 - Negative Introspection Axiom

- Can pick and choice which ones you want for your logic

<table>
<thead>
<tr>
<th>Modal Logic</th>
<th>Constraints on R</th>
<th>Axioms in Proof Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>no constraint</td>
<td>D</td>
</tr>
<tr>
<td>T</td>
<td>reflexive</td>
<td>D,K</td>
</tr>
<tr>
<td>S4</td>
<td>reflexive, transitive</td>
<td>D,K,P</td>
</tr>
<tr>
<td>S5</td>
<td>reflexive, transitive, symmetric</td>
<td>D,K,P,N</td>
</tr>
<tr>
<td>Weak S4</td>
<td>transitive</td>
<td>D,P</td>
</tr>
<tr>
<td>Weak S5</td>
<td>transitive, euclidean</td>
<td>D,P,N</td>
</tr>
</tbody>
</table>
Example Proof

Nora believes $p \rightarrow q$
Nora does not believe q (believes $\neg q$ or has no belief about q)
Show that Nora does not believe p
Two Wise Men

The king tells two wise men that at least one of them has a white spot on his forehead. Each man can see the other’s forehead but not his own. The first wise man says “I don’t know whether I have a spot.” The second says ...

• For \(a\) (the first wise man)
 - \(a\) knows whether \(b\) has a spot and that either \(a\) or \(b\) or both have a spot
 - if \(b\) does not have a spot, \(a\) would know this, and would hence know that \(a\) has a spot, and would answer “I know I have a spot”
 - but he didn’t, so \(a\) must know that \(b\) has a spot

• For \(b\) (the second wise man)
 - knows that \(a\) knows whether \(b\) has spot and that either \(a\) or \(b\) has spot
 - \(b\) knows that if \(b\) does not have a spot, \(a\) would know this, and \(a\) would conclude that \(a\) has a spot, and \(a\) would answer “I know I have a spot.”
 - but \(a\) didn’t, so \(b\) must have a spot, and \(b\) answers “I know I have a spot”

Writing the Knowledge

• Says two wise men, so let’s view this as knowledge
 - Computer will be \(b\). How does \(b\) reason?

• \(b\)’s knowledge
 - No need to put inside of a modal operator
 - either \(a\) or \(b\) has a spot (or both have a spot)
 - \(a\) has a spot

• \(b\)’s knowledge of \(a\)’s knowledge (written with \(K_a\))
 - \(a\) knows \(a\) or \(b\) has a spot (or both)
 - \(a\) knows whether \(b\) has a spot
 - \(a\) does not know whether \(a\) has a spot
 - if \(b\) has a spot, \(a\) will know it
 - if \(b\) does not have a spot, \(a\) will know it
Proving that $s(b)$

\[-s(b) \rightarrow K_a(\neg s(b))\]
\[K_a(s(a) \lor s(b))\]
\[\neg K_a(s(a))\]
\[s(b) \lor K_a(\neg s(b))\]

Can we rewrite 2 as $K_a(s(a)) \lor K_a(s(b))$? No.

\[K_a(\neg s(b) \rightarrow s(a))\]
\[K_a(\neg s(b)) \rightarrow K_a(s(a))\]
\[\neg K_a(\neg s(b)) \lor K_a(s(a))\]
\[s(b) \lor K_a(s(a))\]
\[s(b)\]

Pitfall of Syntactic Proofs

- Syntactic Proofs
 - Extra axioms
 - Converting to and from CNF
 - What do we need to make it complete?
 - Can we search effectively in this space?
Alternative: Proofs in Possible Worlds

- $B(\alpha)$ in w means α is true in all w' such that wRw'
 - Let’s use $T(\alpha, w)$ to mean α is true in w
- T and R are used in our semantics to give meaning to the modal operator
- However, could view T and R to be predicates in FOPC logic
 - Worlds could then be objects in that language
 - Translate sentences about B into R and T
 - Predicates in modal logic become functions
 - Rather than use axioms, use corresponding restriction on R

Example

\[\neg s(b) \rightarrow K_a(\neg s(b))\]
\[\neg s(b) \rightarrow (\forall w R(w_0, w) \rightarrow \neg T(s(b), w))\]
\[K_a(s(a) \lor s(b))\]
\[\neg K_a(s(a))\]
\[K_a(s(a) \lor s(b))\]
\[\forall w R(w_0, w) \rightarrow T(s(a) \lor s(b), w)\]
Overview

- Omnipotent
- Model Operator Axioms
- Syntactic Proofs
 ⇒ Constants and Quantifiers

Constants and Quantifiers

- $B_j(\text{woman(mary)})$
 - Does the system and john agree on who mary is?
- $\text{woman(mary)} \land B_j(\text{woman(mary)})$
 - Now do they agree?
- $\exists x \ B_j(\text{woman(x)})$ versus $B_j(\exists x \ \text{woman(x)})$