Comparison to Datalog/FOPC

- Semantics of FOPC can be thought of as possible worlds
 - Intended interpretation is w_0
 - All models of the KB are accessible from w_0: $w_0 R w_{\prime}$
 - Including the intended interpretation: $w_0 R w_0$

- For modal logic
 - There is a real world w_0 that the agent knows it is in (assumed to have complete knowledge)
 - Accessibility relation is not just from the initial world
 - Will allow us to model nested modal operators: bel(bel(raining))
 - Might not include $w_0 R w_0$
 - Agents might have incorrect beliefs

Worlds (interpretation) can be repeated, but with different accessibility relations

Modal Logic

- Modal operator operates on formulas (sentences in a logic)
- Modality is used to express: beliefs
- Can be used for expressing possibility:
 - possibly(raining)
- $\text{raining} \rightarrow \text{wet}$

- Can be used for expressing desires (user's goals)
- Want $m (\text{cleandishes})$
- $\text{cleandishes} \rightarrow \text{cleaningthem}$
- Can be used for expressing what the system can reason about:
 - Syntactically sound and complete
 - Grounded (by design)

Modal operator applies to formulas (sentences in a logic)
Distribution Axiom

\[(\phi \land B\psi) \rightarrow (B\phi \land B\psi) \]

- This can equivalently be written as
- Distribution over implication
- This can equivalently be written as
- Possible worlds semantics forces agents to believe all consequences of their beliefs
- This is forced by the possible worlds semantics
- So agents believe all the consequences of their beliefs
- If \(B\phi \) and \(B(\phi \rightarrow \psi) \) does \(B\psi \)?

Epistemic Necessitation

- Does the agent know all necessary truths?
- Example:
 - \(\neg(\phi \land \psi) \leftrightarrow (\neg\phi \lor \neg\psi) \)
 - So it is true in every accessible world from any world
 - Possible worlds semantics is forcing us to make all tautologies true of modal operators
 - Can be written as: If \(\phi \) then \(B\phi \)
 - This is not the same as \(\phi \rightarrow B\phi \)
 - That is saying that the agent believes everything that is true in the world

Overview

- Omniscience
- Model Operator Axioms
- Syntax and Semantics
- Quantified Proofs
- Quantifiers and Quantifiers
- Model Operator Axioms
- Quantifiers
- Quantified Proofs
- Axioms
- Операции
Knowledge Axiom

- \(B\phi \rightarrow \phi \)
- Everything that user believes is true

Which is why it is called the knowledge axiom

- Not usually used for belief, but is used for knowledge

Consider if \(R \) is reflexive:

- \(wRw \) is true for every world

- Means that \(B\phi \) is only true if \(\phi \) is true in the current world

- Person’s beliefs (+ve and -ve) are subset of what is true in current world

- So if \(R \) is reflexive then \(B\phi \) is true for every world

- Which is why it is called the knowledge axiom

- Everything that user believes is true

\[\phi \rightarrow B\phi \]

Properties on \(R \)

- \(R \) is euclidean if \(R \) has what two properties?

- Serial: for all \(w \) there exists \(w' \) s.t. \(wRw' \)

- Transitive: if \(wRw' \) and \(w'Rw'' \) then \(wRw'' \)

- Symmetric: if \(wRw' \) then \(w'Rw' \)

- Reflexive: for all \(w \), \(wRw \)

- Certain properties depend on what \(L \) is modeling, you might want \(R \) to have:

- Certain properties

Overview

- Constants and Quantifiers

- Syntactic Proofs

- Model Operator Axioms

- Common Associativity

- Common Associativity
Different Combinations

- Axioms:
 - Epistemic Necessitation
 - Distribution Axiom
 - Knowledge Axiom
 - Positive Introspection Axiom
 - Negative Introspection Axiom

- Can pick and choose which ones you want for your logic.

Modal Logic Constraints on R Axioms in Proof Theory

K: no constraint
D: reflexive
T: reflexive, transitive
S4: reflexive, transitive
S5: reflexive, transitive, symmetric
Weak S4: transitive
Weak S5: transitive, euclidean

Negative Introspection Axiom

- \(\neg B \phi \rightarrow B (\neg B \phi) \)
- If you do not believe something, you believe you do not believe it.

Positive Introspection Axiom

- \(B \phi \rightarrow B (B \phi) \)
- If a user believes something, the user believes they believe it.

Proof?

- Positive Introspection Axiom holds.
- If \(B \phi \) is true, then \(\neg B \neg \phi \).
- If \(B \phi \) is not true, someone else believes it.
The king tells two wise men that at least one of them has a white spot on his forehead. Each man can see the other's forehead but not his own. The first wise man says "I don't know whether I have a spot." The second says ...

- For a
 - The first wise man says "I don't know whether I have a spot." This means that either a or b has a spot. If a does not have a spot, b would know this, and b would hence know that a has a spot.
 - If a does not have a spot, b would know this, and b would hence know that a has a spot.

- For b
 - The second wise man knows whether a has a spot and that either a or b has a spot. If a does not have a spot, b would know this, and b would conclude that b has a spot, and b would answer "I know I have a spot." But he didn't, so b must know that a has a spot.

- For a
 - a knows that b knows whether a has a spot and that either a or b has a spot. a knows whether a has a spot and that either a or b has a spot.
 - a knows whether a has a spot and that either a or b has a spot.

Example Proof

Nora believes \(p \rightarrow q \)

Nora does not believe \(q \) (she believes \(\neg q \) or has no belief about \(q \))

Show that Nora does not believe \(p \)

\(\neg \text{believes } p \rightarrow \neg \text{believes } q \)
Pitfall of Syntactic Proofs

- Extra axioms
- Converting to and from CNF
- What do we need to make it complete?
- Can we search effectively in this space?

Proving that $s(a) \rightarrow K_b((\neg s(a)))$ given:
1. $K_b(s(a) \lor s(b))$
2. $\neg K_b(s(b))$
3. $s(a) \lor K_b((\neg s(a)))$

CNF of 1

Can we rewrite 2 as $K_B(s(a)) \lor K_B(s(b))$? No.

$K_b((\neg s(a)) \rightarrow K_b(s(b)))$ Distribution Rule

CNF of 6

$s(a) \lor K_b(s(b))$ Resolution 4,7

$s(a)$ Resolution 3,8

Writing the Knowledge

- Says two wise men, so let’s view this as knowledge
- a’s knowledge
 - No need to put inside of a modal operator
 - a or/and b has a spot
- a’s knowledge of b’s knowledge
 - If b knows a or/and b has a spot
 - b knows whether a has a spot
 - b does not know whether a has a spot
 - if a has a spot, b will know it
 - if a does not have a spot, b will know it
Overview

- Omniscient Proofs
- Model Operator Axioms
- Omniscient Proofs

Example

\[\neg s(a) \rightarrow K_b (\neg s(a)) \]
\[\neg s(a) \rightarrow (\forall w \ R(w,0) \rightarrow \neg T(s(a),w)) \]
\[K_b (s(a) \lor s(b)) \]
\[\neg K_b (s(b)) \]

Alternative: Proofs in Possible Worlds

- \(B(\alpha) \) in \(w \) means \(\alpha \) is true in all \(w' \) such that \(wRw' \)
- Let's use \(T(\alpha,w) \) to mean \(\alpha \) is true in \(w \)
- Usually use \(T \) and \(R \) to be predicates in FOPL logics
- \(T \) and \(R \) are used in our semantics to give meaning to the modal operator
- Worlds could then be objects in that language
- Predicates in modal logic become functions
- Predicates in modal logic become functions
- Worlds could then be objects in that language
- However, could view \(T \) and \(R \) to be predicates in FOPL logic
- Rather than use axioms, use corresponding restrictions on \(T \) and \(R \)
Constants and Quantifiers

• $B_j(\text{woman(mary)})$
 - Does the system and john agree on who mary is?

$\text{woman(mary)} \land B_j(\text{woman(mary)})$
 - Now do they agree?

• $\exists x B_j(\text{woman}(x))$ versus $B_j(\exists x \text{woman}(x))$
 - Does the system and john agree on who mary is?

Does the system and john agree on who mary is?