Overview

⇒ Assumption-Based Reasoning
• Abduction
• Default Reasoning

Deduction versus Assumption-Based Reasoning

• Deduction
 - Where you have a KB of facts
 - Conclude things that must be true

• Complete Knowledge Assumption
 - Starting to veer away from deduction
 - Assume that everything you do not know to be true is false

• Assumption-Based Reasoning
 - Specify what things might be true given a set of facts
 - And perhaps some other assumptions
 - Want assumptions to be consistent
Example: Water World

• I have a sensor that tells if my flower-beds are wet
• But, I want to know why they are wet
• Facts about the world (a simplification)

\[
\begin{align*}
\text{cloudy} & \leftarrow \text{rained} \\
\text{wet} & \leftarrow \text{rained} \\
\text{wet} & \leftarrow \text{watered} \\
\text{false} & \leftarrow \text{cloudy} \land \text{sunny} \\
\text{false} & \leftarrow \text{watered} \land \text{cloudy}
\end{align*}
\]

• Things that I am prepared to assume

\[
\begin{align*}
\text{rained} \\
\text{cloudy} \\
\text{watered} \\
\text{sunny}
\end{align*}
\]

• What might be true of the world?
• What might cause wet to be true?

The Assumption-based Framework

Defined in terms of two sets of formulae:

• F is called the facts
 - Assume that they are Horn clauses
• H is called the possible hypotheses or assumables
 - Thing that we might want to consider as being true
 - Ground instances of the assumables can be assumed if consistent with F
Making Assumptions

- \(D \) is a scenario of \(<F,H> \)
 - If \(D \) is a set of ground instances of elements of \(H \)
 - And \(F \cup D \) is satisfiable
 - In other words, it has a model
 - In other words, \(F \cup D \not\models false \)
 - In other words, be careful what you put in \(D \)
 - Some subsets of ground instances of \(H \) will not work
- What are the scenarios of water world?

Explanations

- \(D \) is an explanation of \(g \) from \(<F,H> \)
 - If \(D \) is a scenario of \(<F,H> \)
 - So \(F \cup D \) is satisfiable
 - And \(F \cup D \models g \)
- \(D \) is a minimal explanation of \(g \) from \(<F,H> \)
 - No strict subset of \(D \) is also an explanation
 - Want a minimal explanation as it indicates the smallest number of assumptions we need to make to prove \(g \)
 - Prefer ‘watered’ over ‘watered and sunny’
 - For medical diagnosis, prefer single disease rather than multiple
- What are the
 - explanations of wet?
 - minimal explanations of wet?
Extensions

- E is an extension of $<F,H>$
 - D is a scenario of H that is maximal
 - D is not a strict subset of any other scenario of H
 - Opposite of explanation. Want it as big as possible
 - E is the logical closure of $F \cup D$
 - E includes $F \cup D$ and everything that can be derived from that
 - Definition in textbook is difficult to parse, but this is what they mean
- Each extension is like a different world
 - that includes F
 - and includes as much of H as is consistent
 - and includes all consequences
 - but no other things

Extensions Continued

- Anything that can be explained will be in an extension
 - But unlike an extension, hard to pin down why it might be true
- There can be a number of different extensions
 - How do the extensions differ?
 - If g is in extension E_1 but not in E_2, $\neg g$ must be in E_2
- What are the extensions of water world?
Recap

- F: facts about the world, and H assumables
- D is a scenario of $\langle F, H \rangle$
 - D is a set of ground instances of elements of H
 - $F \cup H$ is satisfiable
- Scenario D is an explanation of g if $F \cup D \models g$
 - D is minimum explanation if no strict subset of D also explanation
- Scenario D is a maximal scenario
 - ... if no strict subset of D is also scenario of $\langle F, H \rangle$
 - Logical closure of $F \cup D$ is called an extension

Default Reasoning and Abduction

- Two applications of using the assumption-based framework:
 - Abduction
 - Where g is given, and we are interested in explaining it $wet.$ so either it rained or we watered
 - Default reasoning
 - Where the truth of g is unknown and is to be determined
 + Finding an explanation for g is evidence it is true
 + Finding an explanation for $\neg g$ is evidence it is not true
 - Example: if tweety is a bird, can it fly?
Overview

- Assumption-Based Reasoning
 ⇒ Abduction
- Default Reasoning

Abduction

- You observe something being true in the world, and want to conjecture what may have produced this observation
- Given g, facts F about world, and assumables H,
 find a minimal explanation D
 - D is a ground subset of H and $F \cup D$ is satisfiable: scenario
 - D is as small as possible (occam’s razor)
 - $F \cup D \models g$
- Can use this for expert systems, say for diagnosing a disease
Example

- \(H \)
 \(\text{interestedin}(Ag,\text{Topic}) \)

- \(F \)
 \(\text{about(article94,ai)} \)
 \(\text{about(article34,informationhighway)} \)
 \(\text{about(article34,ai)} \)
 \(\text{about(article34,skiing)} \)
 \(\text{selects}(Ag,Art) \leftarrow \text{about}(Art,\text{Topic}) \land \text{interestedin}(Ag,\text{Topic}) \)

- \(g = \text{selects}(fred,\text{article94}) \)

Note that \(H \) here is an atom (fact) with variables in it
- What values should we instantiate for it?
- Minimal explanations?

Implementation 1: Bottom-up Approach

- Set \(D \) to \(\{ \} \)
- Loop
 - Take ground instance \(d \) of something from \(H \)
 - Ensure \(F \cup D \not\models d \Rightarrow F \cup D \cup \{\neg d\} \not\models false \)
 + Can do this efficiently if horn, using unit resolution
 - Ensure \(F \cup D \cup \{d\} \) is consistent \(\Rightarrow F \cup D \cup \{d\} \not\models false \)
 - Add \(d \) to \(D \)
 + Check if \(F \cup D \models g \Rightarrow F \cup D \cup \{\neg g\} \models false \)
 + If yes, record it, and don’t pursue this explanation further
 - Need to do this as a breadth first search
 (in order to find all possible different explanations)
- This is like a bottom-up search
 - Could take a LONG time
 - Are the explanations minimal?
Implementation 2: Top-down Approach

• Set D to $\{\}$
• Do top-down proof (breath-first)
• Allow proof algorithm to use F, D and H
• Each time you use something from H, say d
 - Ensure it is ground (or delay until it is ground)
 - Ensure $F \cup D \not\models d$
 - Ensure d is consistent with $F \cup D$
 - Add d to D
• Do breath-first search to find all different explanations

Overview

• Assumption-Based Reasoning
• Abduction
 \Rightarrow Default Reasoning
Default Reasoning

- Where the truth of g is unknown and is to be determined
 - Finding an explanation for g is evidence it is true
 - Finding an explanation for $\neg g$ is evidence it is not true
 - Do not care about the actual explanation
- Default reasoning allows information to be incorporated that is not always true, but might have exceptions
 - Like the CKA, allow things to be assumed if you cannot prove otherwise
 - But can control what things are assumable, and ensures extension is satisfiable

Tweety World

- Tweety is a bird
 - Can it fly?
 - $\text{fly}(X) \leftarrow \text{bird}(X)$
- What if Tweety is an ostrich
 - Need to change previous rule
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X)$
- What if Tweety has a broken wing
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X) \land \neg \text{hurt}(X)$
- What if Tweety is a baby bird
 - $\text{fly}(X) \leftarrow \text{bird}(X) \land \neg \text{ostrich}(X) \land \neg \text{hurt}(X) \land \neg \text{baby}(X)$
Default Reasoning

• When giving information, you don’t want to enumerate all of the exceptions, even if you could think of them all.

• In default reasoning, you specify general knowledge and modularly add exceptions. The general knowledge is used for cases you don’t know are exceptional.

• Default reasoning is non-monotonic: When you add that something is exceptional, you can’t conclude what you could before.

Classical Logic is Monotonic

• If $KB \models g$ then $KB \cup A \models g$
 - Classical logic is monotonic
 - Adding more stuff to KB does not make stuff that was true become false

• Every time we think of new exception,
 - We cannot just add a new rule
 - We have to change our KB

• Adding new rules is much better than changing rules
Defaults as Assumptions

- Default reasoning can be modeled using
 - \(H \) as normality assumptions
 - \(F \) states what follows from the assumptions
- An explanation of \(g \) gives an argument for \(g \)

Default Example

- \(H \)
 \[\text{flys}(X) \leftarrow \text{bird}(X) \]
- \(F \)
 \[\begin{align*}
 \text{bird}(\text{tweety}) \\
 \text{bird}(X) & \leftarrow \text{ostrich}(X) \\
 \text{false} & \leftarrow \text{flys}(X) \land \text{ostrich}(X) \\
 \text{false} & \leftarrow \text{flys}(X) \land \text{bird}(X) \land \text{hurt}(X) \\
 \text{false} & \leftarrow \text{flys}(X) \land \text{bird}(X) \land \text{baby}(X)
 \end{align*} \]
- \(D = \{ \text{flys}(\text{tweety}) \leftarrow \text{bird}(\text{tweety}) \} \)
- \(F \cup D \) is consistent, so it is a scenario
- \(F \cup D \models \text{flys}(\text{tweety}) \)
- \(D \) is a minimal explanation of \(\text{flys}(\text{tweety}) \) from \(<F,H> \)
Contradictory Explanations

- **Music World**
 - I dislike most American music and I like most disco songs
 - Do I like music by Donna Summers?
 - **H:** \[\text{like}(X) ← \text{disco}(X)\]
 \[\text{false} ← \text{americanmusic}(X) ∧ \text{like}(X)\]
 - **F:** \[\text{disco}(\text{donnasummers})\]
 \[\text{americanmusic}(\text{donnasummers})\]
 \[\text{disco}(\text{beegees})\]
 \[\neg \text{americanmusic}(\text{beegees})\]

- **Two different explanations**
 - \[D_1 = \{\text{like}(\text{donnasummers}) ← \text{disco}(\text{donnasummers})\}\]
 - \[D_2 = \{\text{false} ← \text{americanmusic}(\text{donnasummers}) ∧ \text{like}(\text{donnasummers})\}\]

Overriding Assumptions

- **Add cancellation rule to** \(F\)
 - \[\text{like}(X) ← \text{americanmusic}(X) ∧ \text{disco}(X)\]
 - This rule disallows \(D_2\) from being consistent with \(F\)
Explanations D_1 and D_2 give two different answers.

Part of two different extensions.
Resolving Competing Arguments

• But what if no cancellation rule?
 - What do you do when there are multiple extensions that give different answers?
• Could require g to be in all extensions of $<F,H>$