Overview

⇒ Complete Knowledge Assumption
 • Approach 1: Clark’s Completion
 • Approach 2: Negation as Failure

Horne Clauses

• Allowed negative information to be expressed
• System can conclude now that
 - some things are true
 - some things are false, using the negative information
 - some things it just doesn’t know
Complete Knowledge Assumption

• Why not assume KB includes all positive facts, and everything else is false (similar to unique name assumption)

• Examples:
 - If I haven’t stated that two rooms are adjacent, assume that they are not
 - If I haven’t stated that Jim is Mary’s father, assume that he is not

• We don’t want to state negative facts in KB, but we want to ask queries of form \(\neg p \) and use \(\neg p \) in body of rule

• How can we formalize complete knowledge assumption?

Overview

• Complete Knowledge Assumption
 \(\Rightarrow \) Approach 1: Clark’s Completion

• Approach 2: Negation as Failure
Clark’s Completion

- Typically only used with Datalog
- If you have
 \[a \leftarrow b_1 \]
 ...
 \[a \leftarrow b_n \]
- You have equivalently \[a \leftarrow b_1 \lor ... \lor b_n \]
 - Clark’s Normal Form
- Clark’s Completion: \[a \leftrightarrow (b_1 \lor ... \lor b_n) \]
- If you have predicate \(p \) defined by no clauses in KB
 - the completion is \(p \rightarrow \text{false} \)
 - Which is the same as saying \(\neg p \)

Variable Case: Example

- Example
 \[\text{student}(\text{mary}) \]
 \[\text{student}(\text{john}) \]
 \[\text{student}(\text{ying}) \]
- Same as
 \[\text{student}(X) \leftarrow X = \text{mary} \]
 \[\text{student}(X) \leftarrow X = \text{john} \]
 \[\text{student}(X) \leftarrow X = \text{ying} \]
 - Note that ‘\(= \)’ sign could means equality
- Collect them all together and you get
 \[\text{student}(X) \leftarrow X = \text{mary} \lor X = \text{john} \lor X = \text{ying} \]
- Completion is
 \[\text{student}(X) \leftrightarrow X = \text{mary} \lor X = \text{john} \lor X = \text{ying} \]
Variable Case

- **Example**
 \[p(t_1, \ldots, t_n) \leftarrow B \]

- **Clark Normal form** is
 \[p(V_1, \ldots, V_n) \leftarrow V_1 = t_1 \land \ldots \land V_n = t_n \land B \]

- **Clark’s Completion** is
 \[p(V_1, \ldots, V_n) \leftrightarrow V_1 = t_1 \land \ldots \land V_n = t_n \land B \]

Several Clauses

- Say if you have in Clark Normal form
 \[p(V_1, \ldots, V_n) \leftarrow C_1 \]
 \[\ldots \]
 \[p(V_1, \ldots, V_n) \leftarrow C_n \]

- **Clark completion of \(p \) is**
 \[p(V_1, \ldots, V_n) \leftrightarrow C_1 \lor \ldots \lor C_n \]
 - Note that each \(C_i \) might have a number of conjunctions to it for its variable bindings
 - Before putting it together, make sure each part doesn’t have any other variables in common other than the \(V_i \)’s
Using Clark’s Completion

• Typically just used with Datalog
• Clark Completion though requires:
 - Disjunctive and negative knowledge
 - Usually also assume UNA or need axioms for equality
• Can be applied to just some of the predicates, not necessarily all
 - Only use rules from KB that have predicate on left hand side
 - Do not use ones in which it is on the right hand side

Example 1

parent(X,Y) ← father(X,Y)
parent(X,Y) ← mother(X,Y)
parent(joe,hunter)

Let’s clark completion on parent
Example 2

- Can be used with recursive predicates

\[\text{lt}(0, s(X)) \]
\[\text{lt}(s(X), s(Y)) \leftarrow \text{ls}(X, Y) \]

Clark Normal Form:
\[\text{lt}(A, B) \leftarrow A = 0 \land B = s(X) \]
\[\text{lt}(A, B) \leftarrow A = s(X) \land B = s(Y) \land \text{ls}(X, Y) \]
\[\text{lt}(A, B) \leftarrow (A = 0 \land B = s(X)) \lor (A = s(X) \land B = s(Y) \land \text{ls}(X, Y)) \]

Clark Completion:
\[\text{ls}(A, B) \rightarrow (A = 0 \land B = s(X)) \lor (A = s(X) \land B = s(Y) \land \text{ls}(X, Y)) \]

New rule to add to KB:
\[(A = 0 \land B = s(X)) \lor (A = s(X) \land B = s(Y) \land \text{ls}(X, Y)) \leftarrow \text{ls}(A, B) \]

Convert to CNF:
\[(A = 0 \land B = s(X)) \lor (A = s(X) \land B = s(Y) \land \text{ls}(X, Y)) \lor \neg \text{ls}(A, B) \]

New Axioms
\[A = 0 \lor A = s(X) \lor \neg \text{ls}(A, B) \]
\[A = 0 \lor \text{ls}(X, Y) \lor \neg \text{ls}(A, B) \]
\[B = s(X) \lor \text{ls}(X, Y) \lor \neg \text{ls}(A, B) \]

Can I prove \(\neg \text{ls}(s(0), 0) \)

yes \lor \text{ls}(s(0), 0)

use \(B = s(X) \lor B = s(Y) \lor \neg \text{ls}(A, B) \)

yes \lor 0 = s(X) \lor 0 = s(Y)

Unique Name Assumption
Overview

- Complete Knowledge Assumption
- Approach 1: Clark’s Completion
 ⇒ Approach 2: Negation as Failure

Negation as Failure

- A simpler way to make the CKA is to use negation as failure
 - If you cannot prove \(p \), assume it is false
 - Call this \(\sim p \)
- Add negation as failure to Datalog
 - Allow \(\sim p \) to be used in bodies of datalog clauses
 - Allow negative queries: \(? \sim p\)
Variables and Delaying

• Must be careful about variables
 - Similar to inequality, need to delay till variables are instantiated
 - Prolog doesn’t do this

• Example:
 $KB = \{p(X) \leftarrow q(X) \land \neg r(X), \quad q(a), \quad q(b), \quad r(b), \quad r(d)\}$
 $\n p(X) \n$