Overview

⇒ Lowest-Cost-First
• Best-First Search
• A* Search
• Iterative Deepening

Lowest-cost-first Search

• Sometimes there are costs associated with arcs. The cost of a path g is the sum of the costs of its arcs
• Lowest-cost-first search finds the shortest path to a goal node
• Frontier is implemented as a priority queue ordered by g
 - At each stage, it selects the shortest path on the frontier
• When arc costs are equal ⇒ breadth-first search
Heuristic Search

- Previous methods do not take into account goal until at goal node
- Often there is extra knowledge that can be used to guide the search: heuristics
- Use \(h(n) \) as estimate of distance from node \(n \) to a goal node
- \(h(n) \) is underestimate if it is less than or equal to the actual cost of the shortest path from node \(n \) to a goal
- \(h(n) \) uses only readily obtainable information about a node
Best-first Search

- Idea: always select node on the frontier with smallest h-value
- Treat the frontier as a priority queue ordered by h
- Uses space exponential in path length

Applying Best-First Search to Top-Down Proofs

- How could we use this in searching through resolutions?

```
a ← b ∧ c, a ← g,  yes ← b ∧ c ∧ d  yes ← g ∧ d

a ← h, b ← j,  yes ← h ∧ d

b ← k, d ← m,  yes ← j ∧ c ∧ d  yes ← m ∧ d

f ← p, g ← m,  yes ← k ∧ c ∧ d  yes ← f ∧ d

f ← p, g ← m,  yes ← m ∧ d  yes ← p ∧ d

h ← m,  yes ← m ∧ c ∧ d

k ← m,  yes ← d

p,  yes ←
```

?a ∧ d
Seems Like A Good Idea But ...

• Not guaranteed to find a solution, even if one exists

![Diagram of a graph with nodes and edges]

• It doesn’t always find the shortest path

Example with Top-Down Theorem Proving

• Not guaranteed to find a solution, even if one exists

\(g \leftarrow a \)
\(g \leftarrow d \land e \)
\(a \leftarrow b \)
\(b \leftarrow a \)
\(d \)
\(e \)
\(? g \)
Overview

- Lowest-Cost-First
- Best-First Search
 ⇒ A* Search
- Iterative Deepening

A* Search

- A* search takes path to a node and heuristic value into account

 - $g(n)$ be the cost of the path found to node n
 + From lowest-cost first search

 - $h(n)$ be the estimate of the cost from n to goal
 + From best-first search

 - Let $f(n) = g(n) + h(n)$.
 + $f(n)$ is estimate of path from start to goal via n

- A* orders the frontier by $f(n)$
 + Stops when min node in frontier is goal node
A* Finds Optimal Solution

- If there is a solution, A* always finds an optimal solution
 - the first path to goal that it finds is optimal
- If ...
 - the branching factor is finite (not necessarily a finite number of nodes)
 - arc costs are bounded above zero
 - there is some $\epsilon > 0$ such that all of the arc costs are greater than ϵ
 - $h(n)$ is an underestimate of the cost of the best path from n to a goal node and ≥ 0

Proof that if it finds a path, the path is optimal

- Let an optimal path have weight f^*
- Cells in the frontier are ordered by $g(n) + h(n)$
 - Where $g(n)$ is strictly increasing as you go down the path
 - And $h(n)$ is a lower-estimate ≥ 0 of the remaining distance
- Assume A* stops at a goal node with non-optimal path p
 - So, p was on top of the frontier
 - Since p is not optimal, $g(p) > f^*$
 - Since p ends at the goal $g(p) = f(p)$, and so $f(p) > f^*$
 - But, part of the optimal path will be in the frontier,
 - and it will have an f-value $\leq f^*$ (since f-values never over estimate)
 - Hence, it would have been higher in the frontier than p,
 - and so p would not have been chosen
Proof that it will find a path

- Let an optimal path have weight f_1
- Only a finite number of subpaths m have g-score $\leq f_1$
 - Because each arc has weight at least ϵ and finite branching
 - Note: subpath might not end at a goal node and g-score measures the full cost of the subpath
- So, finite number of subpaths $n \leq m$ have f-score at most f_1
 - Because f-score of subpath is greater than its g-score
- A subpath of the optimal path is always in frontier and its f-score always at most f_1
- After at most n steps, optimal path must be on top of frontier (if we haven’t stopped earlier)

Summary of Search Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Frontier Selection</th>
<th>Halts?</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth-first</td>
<td>Last node added</td>
<td>No</td>
<td>Linear</td>
</tr>
<tr>
<td>Breadth-first</td>
<td>First node added</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>Best-first</td>
<td>Global min $h(n)$</td>
<td>No</td>
<td>Exp</td>
</tr>
<tr>
<td>Lowest-cost-first</td>
<td>Global min $g(n)$</td>
<td>Yes</td>
<td>Exp</td>
</tr>
<tr>
<td>A*</td>
<td>Global min $f(n)$</td>
<td>Yes</td>
<td>Exp</td>
</tr>
</tbody>
</table>
Overview

- Lowest-Cost-First
- Best-First Search
- A* Search
 ⇒ Iterative Deepening

Iterative Deepening

- So far all search strategies that are guaranteed to halt use exponential space
- Idea: let’s recompute elements of the frontier rather than saving them
- Look for proofs of depth 0, then 1, then 2, then 3, etc
- You need a depth-bounded depth-first searcher
- If proof cannot be found at depth B, look for proof at depth $B + 1$
Depth-bounded depth-first search

- \textit{dbsearch}(N,D,P) is true if P is path of length D from N to goal

\begin{verbatim}
dbsearch(Node,0,[Node]) :-
 is_goal(Node).

dbsearch(Node,D,NewP) :-
 D > 0,
 neighbors(Node,Neighbors),
 member(NewNode,Neighbors), \iff \text{non-deterministic}
 D1 is D - 1,
 dbsearch(NewNode,D1,P),
 NewP = [Node|P].
\end{verbatim}

? dbsearch(start,5,Path).

- A bit different from previous versions
 - Gathers up all neighbors, and then non-deterministically chooses one
 - Builds the path on the way out