Overview

⇒ Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure

Variables in Clauses

• Example KB

 \[
 \begin{align*}
 \text{father}(tim, steve) & \quad \text{father}(steve, john) \\
 \text{mother}(pam, john) & \quad \text{mother}(susan, pam) \\
 \text{mother}(helen, steve) & \quad \text{mother}(paula, tim) \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{parent}(X, Y) & \leftarrow \text{father}(X, Y) \\
 \text{parent}(X, Y) & \leftarrow \text{mother}(X, Y) \\
 \text{grandparent}(X, Y) & \leftarrow \text{parent}(X, Z) \land \text{parent}(Z, Y)
 \end{align*}
 \]

• Variables in KB useful for expressing knowledge
 - Can derive \text{parent} and \text{grandparent} from \text{father} and \text{mother},
 without having to specifying a lot of extra facts
 - Only way to express an infinite amount of knowledge
 when we add function symbols
Handling Variables

- In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment
- Could do proof procedure on all ground instances of the clauses
 - Include all constants in KB and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms

Example

\[
\begin{align*}
q(a) . \\
q(b) . \\
r(a) . \\
s(W) & \leftarrow r(W) . \\
p(X, Y) & \leftarrow q(X) \land s(Y) .
\end{align*}
\]

Need Alternative

- Number of ground instances of clauses could be huge
- Example

\[
\begin{align*}
\text{explained}(\text{Room}, \text{Now}) & \leftarrow \text{hasdetector}(\text{Room}) \\
& \land \text{lastmotion}(\text{Room}, \text{Prev}) \\
& \land \text{subtract}(\text{Now}, \text{Prev}, \text{Diff}) \\
& \land \text{motionlessinroom}(\text{Room}, \text{Time}) \\
& \land \text{less}(\text{Diff}, \text{Time})
\end{align*}
\]

- Has 5 variables: Room Now Prev Diff Time
- If 100 constants in KB & Query, will be \(100 \times 100 \times 100 \times 100 \times 100 = 10^{30}\) instances
- Need proof procedure to directly handle clauses with variables
Substitution

• **Substitution** is a finite set of the form \(\{V_1/t_1, ..., V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in *normal form* if no \(V_i \) appears in any \(t_j \)
 - \(\{X/Y, Y/a\} \) is not in normal form, but \(\{X/a, Y/a\} \) is

• **Application** of a substitution \(\sigma = \{V_1/t_1, ..., V_n/t_n\} \) to
 expression \(e \) written \(e\sigma \) is the expression with every occurrence
 of \(V_i \) in \(e \) replaced by the corresponding \(t_i \)
 - \(e\sigma \) is an *instance* of \(e \)
 - if \(e\sigma \) is ground then it is called a ground instance of \(e \)

• Instance of clause represented as original clause + substitution

Examples

• \(p(a, X) \{X/c\} \)

• \(p(Y, c) \{Y/a\} \)

• \(p(a, X) \{Y/a, Z/X\} \)

• \(p(X, X, Y, Y, Z) \{X/Z, Y/t\} \)

• \(p(X, Y)←q(a, Z, X, Y, Z) \{X/Y, Z/a\} \)
Unifiers

• Substitution σ is a unifier of expressions e_1 and e_2 if $e_1\sigma$ is the same as $e_2\sigma$
 - Example: $\{X/a, Y/b\}$ is a unifier of $t(a, Y, c)$ and $t(X, b, c)$

• Expressions have many unifiers
 - Example: $p(X, Y)$ and $p(Z, Z)$

 - Which is best?

Most General Unifier

• Most General Unifier (MGU)
 - If σ is a unifier of e_1 and e_2 giving e and if for any other unifier of them, say giving e', e' is an instance of e

• If two expressions can be unified, they will have a MGU
 - Could be more than one

• Expression e is renaming of e' if differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other

• Example: $p(X, Y)$ and $p(Z, Z)$
 + $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 + $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$
Overview

• Variables
 ⇒ Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure

Top-down Proof Procedure Recap

• Start with goal, work toward facts in KB
• Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
a_i & \leftarrow b_1 \land \ldots \land b_p \\
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \ b_1 \land \ldots \land b_p \ a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Definite Resolution with Variables

- Generalized answer clause
 - \(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m\)
- Resolution Rule
 - \(yes(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_m\)
 - \(a \leftarrow b_1 \land ... \land b_p\)
 - \(\frac{\text{(yes}(t_1, ..., t_k) \leftarrow a_1 \land ... \land a_{i-1} \ b_1 \land ... \land b_p \ a_{i+1} \land ... \land a_m)\theta}{\theta\text{ is the most general unifier of } a \text{ and } a_i}\)
- Specification of a proof procedure!

Derivation

- Sequence of \(\gamma_0, \gamma_1, ..., \gamma_n\)
- \(\gamma_0\) is answer clause corresponding to original query
- \(\gamma_i\) obtained by
 - Give \(\gamma_{i-1}\) fresh variables
 - Ensures \(\gamma_{i-1}\) does not have any variables in common with anything in KB
 - Captures how variables are locally scoped
 - Choose an atom in body of \(\gamma_{i-1}\)
 - Choose a clause in \(KB\) whose head will unify with the chosen atom
 - Resolve \(\gamma_{i-1}\) with clause
- \(\gamma_n\) is an answer, and so is of the form \(yes(t_1, ..., t_k) \leftarrow ..\)
- Specification of a proof procedure!
Example: Robot Delivery

Robot Delivery KB

\text{west}(r101, r103),
\text{west}(r103, r105),
\text{west}(r105, r107),
\text{west}(r107, r109),
\text{west}(r109, r111),
\text{west}(r111, r129),
\text{west}(r129, r127),
\text{west}(r127, r125),
east(E, W) ← \text{west}(W, E),
\text{next_door}(E, W) ← \text{east}(E, W),
\text{next_door}(W, E) ← \text{west}(W, E),
two_\text{east}(E, W) ← \text{east}(E, M) \land \text{east}(M, W).

?\text{two_east}(R, r107)
Overview

- Variables
- Top-down Proof Procedure with Variables
 ⇒ Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures
- Top-Down Reasoning Procedure

Reasoning Procedure

- (Not in chapter 2)
- Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is large so need to search carefully
- Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

- **Choice points**
 - **Select** an atom in body of γ_{i-1}
 - **Choose** a clause in KB whose head unify with the chosen atom
- **Always select first atom in body**
 - We will have to consider each atom eventually, so just start with the first
- **Choose first clause in KB whose head matches**
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one
- **Equivalent to Depth-first Search (but more lazily)**
 - Nodes are derivations γ
 - Derivation has children of everything that can be derived from it, using different rules from the KB

Example

?two_east(0,r107)

Answer clause corresponding

A: Use two_east(E,W)← east(E,M)∧ east(M,W)

B: Use east(E,W)← west(W,E)

C: Use west(r101,r103)

D: Use west(r103,E)← east(E,W)

Nothing unifies with west(r107,r101).

Backtrack to D

Backtrack to C

C: Use west(r109,r111)

D: Use east(E,W)← west(W,E)

E: Use west(r107,r109)

yes(0) ← two_east(0,r107)

yes(1) ← east(1,2) ∧ east(2,r107)

yes(3) ← west(4,3) ∧ east(4,r107)

yes(r103) ← east(r101,r107)

yes(r103) ← west(r107,r101)

yes(r105) ← east(r105,r107)

yes(r105) ← west(r107,r105)

yes(r111) ← east(r109,r107)

yes(r111) ← west(r107,r109)

yes(r111) ←
Overview

- Variables
- Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure

⇒ Function Symbols
- Proof Procedures
- Top-Down Reasoning Procedure

Function Symbols

- Predicate symbols used to assert that something is true or false
- constants refer to something in the domain
- variables refer to something in the domain
- functions also refer to something in the domain
 - constant mary could be mapped to Mary
 - function motherof(john) could also be mapped to Mary
- predicate mother(mary, john) versus function motherof(john)
 - predicate symbol captures truths about the world
 + that mary is john’s mother
 - function symbols just point to someone
Usefulness of Function Symbols

• Can talk about objects in the domain without having a constant symbol for them
• Might want to say time(13,15) to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60

• Keep in mind: term function not used like it is elsewhere in CS
 - Does not capture anything about how time works
 - Capturing knowledge about time is up to predicate symbols and clauses

Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: patha and pathb
 + Define facts:
 start(pathb,1)
 after(pathb,1,2)
 after(pathb,2,6)

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)
• Can use functions to refer to a path by referring to its elements
 - Functions have a fixed number of arguments
 + So cannot use path(1,2) path(1,2,6)
 - Instead, make path one cell at a time: p(6, p(2, p(1, null)))
 + constant null represents an empty path
 + function p(T, R) refers to path whose top element is T and rest of path is R
Function Syntax in Datalog

- **Function symbol** is a token starting with lowercase letter
- **Term** is either a variable, constant or of the form $f(t_1, \ldots t_n)$
 - Where f is a function symbol and the t_i’s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause

Semantics of Function Symbols

- ϕ used to just map constants to objects in the domain
- ϕ also maps n-ary function f to $D^n \to D$
 - Notice that it is defined as mapping D^n to D, not constantsn
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols
- Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
- Example
 + Constant 0
 + Successor function $s : D \to D$
 + Can specify all of the natural numbers: $0, s(0), s(s(0)), s(s(s(0))), \ldots$
Defining Functions

- Any knowledge about functions must be defined by clauses
- What knowledge of numbers might we want?
- What knowledge of paths (lists) might we want?

Knowledge about Lists

- Can represent lists by
 - constant `null` represents an empty path
 - function `p(T,R)` refers to path where `T` is top element
 and `R` is rest of path
 - example: `p(6,p(2,p(1,null)))`
- Can we write a predicate `member(X,List)`
 - True if `X` is in list `List`
 `member(Top,p(Top,Rest))`
 `member(X,p(Top,Rest)) ← member(X,Rest)`
Building Data Structures

• Can use function symbols to build other data structures
• Tree data structure:
 - A labeled tree is either a node \(\text{node}(\text{Name}, \text{LeftTree}, \text{RightTree}) \)
 or a leaf \(\text{l}(\text{Name}) \)
 - Example:
 \[
 \text{node}(n1, \text{node}(n2, \text{l}(l1), \text{l}(l2)), \text{node}(n3, \text{l}(l3), \text{node}(n4, \text{l}(l4), \text{l}(l5))))
 \]

Clauses about Trees

• \(\text{has_leaf}(L, T) \) is true if \(L \) is the label of a leaf in tree \(T \)
 \[
 \text{has_leaf}(L, \text{l}(L)).
 \text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT).
 \text{has_leaf}(L, \text{node}(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).
 \]
Overview

• Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
 ⇒ Proof Procedures
• Top-Down Reasoning Procedure

Clauses about Numbers

• Let \(lt(X, Y) \) be true when \(X < Y \)
 - To define it in Datalog, need to capture facts and rules about it that
 capture its entire meaning
 - What is a comprehensive fact about \(lt \) that we can write?
 + Fact should have \(lt \) as its predicate
 + Should include an \(s(\ldots) \)
 + Make it as general as possible
 - What is a rule that we can write about \(lt \)
 + Should have \(lt \) on right and left hand side
 + Atom on right hand side should be simpler than left hand side
 + By repeatedly applying the rule, should end at fact
 + Think of this as the induction step in a proof by induction
Bottom-Up Proof Procedure with Variables

• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances
• But, function symbols cause infinite number of terms
• But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers
 - Make sure procedure fairly introduces ground instances

Top Down Proof Procedure

• Just have to make sure procedure that determines MGU works with function symbols
• Need to be careful about normal form
 - Substitution is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in normal form if no \(V_i \) appears in any \(t_j \)
• Most substitutions can be put into normal form
 \(\{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\} \)
 \(\{X/Z, Z/X\} \Rightarrow \{X/Z\} \)
• Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?
Algorithm for Finding MGU (Not in textbook)

- Take two expressions (no variables in common)
 - Compare them token for token (left to right)
- If one has a connector, other must have same one
- If one has n-ary symbol \(p \), other must as well
- For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable \(V \) and other has term \(t \), add \(V/t \) to substitution
 + \(t \) should not contain \(V \) (occurs check)
 + Apply \(V/t \) to rest of both expressions and to any terms in substitution list
 + Variable \(V \) should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant \(c \), other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)

Normal Form of Substitutions

- \(\{X/f(X)\} \) cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?
- Consider \(KB = lt(X, s(X)) \)
 \(lt(X, s(Y)) \leftarrow lt(X, Y) \).
- Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
 - The unifier \(\{X_1/X, X/s(X)\} \) sort of makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called occurs check
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]

Overview

- Variables
- Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures
 \[\Rightarrow \text{Top-Down Reasoning Procedure} \]
Top-Down Proof Procedure (Repeat)

• Sequence of $\gamma_0, \gamma_1, ..., \gamma_n$
• γ_0 is answer clause corresponding to original query
• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause
• γ_n is an answer, and so is of the form $\text{yes}(t_1, ..., t_k) \leftarrow$.

Example Proof with Functions

• Defined $\text{has_leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has_leaf}(L, L(L)).$
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, LT),$
 $\text{has_leaf}(L, n(N, LT, RT)) \leftarrow \text{has_leaf}(L, RT).$

• Prove l_4 is a leaf of $n(n_1, n(n_2, l(l(11), l(l(12))), n(n_3, l(l(13), n(n_4, l(l(14), l(l(15))))))).$

 $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_1, n(n_2, l(l(11), l(l(12))), n(n_3, l(l(13), n(n_4, l(l(14), l(l(15))))))).)$.

 1st clause in KB does not unify

 2nd clause in KB fails
 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_3, l(l(13), n(n_4, l(l(14), l(l(15)))))).).$

 1st clause in KB does not unify

 2nd clause in KB fails $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l(13))).$.
 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, n(n_4, l(l(14), l(l(15))))).$

 1st clause in KB does not unify

 2nd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l(14))).$.
 3rd clause in KB unifies $\text{yes} \leftarrow \text{has_leaf}(l_4, l(l(15))).$

 1st clause in KB does $\text{yes} \leftarrow$.

 A

 C

 D
Final Word on Functions

- Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 - It is the subtree with node n1 which right branch ... and left branch ...

- Unification does the right thing with functions
 - Just do hierarchal symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching