Overview

⇒ Variables
• Top-down Proof Procedure with Variables
• Top-Down Reasoning Procedure
• Function Symbols
• Proof Procedures
• Top-Down Reasoning Procedure

Variables in Clauses

• Example KB
 father(tim, steve) father(steve, john)
 mother(pam, john) mother(susan, pam)
 mother(helen, steve) mother(paula, tim)
 parent(X, Y) ← father(X, Y)
 parent(X, Y) ← mother(X, Y)
 grandparent(X, Y) ← parent(X, Z) ∧ parent(Z, Y)

• Variables in KB useful for expressing knowledge
 - Can derive parent and grandparent from father and mother,
 without having to specifying a lot of extra facts
 - Only way to express an infinite amount of knowledge
 when we add function symbols
Handling Variables

* In order for a clause to be true for an interpretation, must be true in that interpretation for any variable assignment

* Could do proof procedure on all ground instances of the clauses
 - Include all constants in KB and in query
 - If no constants, one (just one) needs to be invented
 - Only a finite number, so algorithm guaranteed to stop
 - Method is complete and sound for proving ground atoms

* Example

 \[\begin{align*}
 & q(a), \\
 & q(b), \\
 & r(a), \\
 & s(W) \leftarrow r(W), \\
 & p(X,Y) \leftarrow q(X) \land s(Y).
 \end{align*} \]

Need Alternative

* Number of ground instances of clauses could be huge

* Example

 \[\text{explained}(Room,Now) \leftarrow \text{hasdetector}(Room) \land \text{lastmotion}(Room,Prev) \land \text{subtract}(Now,Prev,Diff) \land \text{motionlessinroom}(Room,Time) \land \text{less}(Diff,Time) \]

 - Has 5 variables: Room Now Prev Diff Time
 - If 100 constants in KB & Query, will be $100 \times 100 \times 100 \times 100 \times 100 = 10^{30}$ instances

* Need proof procedure to directly handle clauses with variables
Substitution

- **Substitution** is a finite set of the form \(\{ V_1/t_1, ..., V_n/t_n \} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in normal form if no \(V_i \) appears in any \(t_j \)
 - \(\{ X/Y, Y/a \} \) is not in normal form, but \(\{ X/a, Y/a \} \) is

- **Application** of a substitution \(\sigma = \{ V_1/t_1, ..., V_n/t_n \} \) to expression \(e \) written \(e\sigma \) is the expression with every occurrence of \(V_i \) in \(e \) replaced by the corresponding \(t_i \)
 - \(e\sigma \) is an instance of \(e \)
 - if \(e\sigma \) is ground then it is called a ground instance of \(e \)

- Instance of clause represented as original clause + substitution

Examples

- \(p(a, X) \{ X/c \} \)
- \(p(Y, c) \{ Y/a \} \)
- \(p(a, X) \{ Y/a, Z/X \} \)
- \(p(X, X, Y, Y, Z) \{ X/Z, Y/t \} \)
- \(p(X, Y) \leftarrow q(a, Z, X, Y, Z) \{ X/Y, Z/a \} \)
Most General Unifier

- **Most General Unifier** (MGU)
 - If \(\sigma \) is a unifier of \(e_1 \) and \(e_2 \) giving \(e \) and if for any other unifier of them, say giving \(e' \), \(e' \) is an instance of \(e \)
 - If two expressions can be unified, they will have a MGU
 - Could be more than one
 - Expression \(e \) is *renaming* of \(e' \) if differ only in names of vars
 - They are both instances of each other
 - Expressions resulting from applying MGU are renamings of each other
 - Example: \(p(X,Y) \) and \(p(Z,Z) \)
 - \(\{X/Z,Y/Z\} \) is an MGU resulting in \(p(Z,Z) \)
 - \(\{Y/X,Z/X\} \) is an MGU resulting in \(p(X,X) \)
Overview

- Variables
 ⇒ Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures
- Top-Down Reasoning Procedure

Top-down Proof Procedure Recap

- Start with goal, work toward facts in KB
- Definite Clause Resolution for Ground Case

$$
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
\text{yes} & \leftarrow b_1 \land \ldots \land b_p \\
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_{j-1} \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
$$
Definite Resolution with Variables

• Generalized answer clause
 - \textit{yes}(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_m

• Resolution Rule

 \begin{align*}
 &\frac{yes(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_m}{a \leftarrow b_1 \land \ldots \land b_p} \\
 &\frac{\gamma_i}{\text{(yes}(t_1, \ldots, t_k) \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m)\theta} \\
 \end{align*}

 - Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)

Derivation

• Sequence of \(\gamma_0, \gamma_1, \ldots, \gamma_n \)

• \(\gamma_0 \) is answer clause corresponding to original query

• \(\gamma_i \) obtained by
 - Give \(\gamma_{i-1} \) fresh variables
 + Ensures \(\gamma_{i-1} \) does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of \(\gamma_{i-1} \)
 - Choose a clause in \(KB \) whose head will unify with the chosen atom
 - Resolve \(\gamma_{i-1} \) with clause

• \(\gamma_n \) is an answer, and so is of the form \(yes(t_1, \ldots, t_k) \leftarrow \).

• Specification of a proof procedure!
Example: Robot Delivery

Robot Delivery KB

\[
\text{west}(r_{101}, r_{103}). \\
\text{west}(r_{103}, r_{105}). \\
\text{west}(r_{105}, r_{107}). \\
\text{west}(r_{107}, r_{109}). \\
\text{west}(r_{109}, r_{111}). \\
\text{west}(r_{111}, r_{129}). \\
\text{west}(r_{129}, r_{127}). \\
\text{west}(r_{127}, r_{125}). \\
\text{east}(E, W) \leftarrow \text{west}(W, E). \\
\text{next_door}(E, W) \leftarrow \text{east}(E, W). \\
\text{next_door}(W, E) \leftarrow \text{west}(W, E). \\
two_east(E, W) \leftarrow \text{east}(E, M) \land \text{east}(M, W). \\
\text{?two_east}(R, r_{107})
\]
Overview

- Variables
- Top-down Proof Procedure with Variables
 ⇒ Top-Down Reasoning Procedure
- Function Symbols
- Proof Procedures
- Top-Down Reasoning Procedure

Reasoning Procedure

• (Not in chapter 2)
• Reasoning procedure
 - Resolves the nondeterminism of proof procedure
 - Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 - Search space is large so need to search carefully
• Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)
Depth-first Search

- **Choice points**
 - Select an atom in body of γ_{i-1}
 - Choose a clause in KB whose head with unify with the chosen atom
- Always select first atom in body
 - We will have to consider each atom eventually, so just start with the first
- Choose first clause in KB whose head matches
 - Run with this as long as possible
 - If fail to produce an answer, backtrack to most recent choice, and pick next one
- Equivalent to Depth-first Search (but more lazily)
 - Nodes are derivations γ
 - Derivation has children of everything that can be derived from it, using different rules from the KB

Example

```
?two_east(0, r107)
Answer clause corresponding yes(0) ← two_east(0, r107)
A: Use two_east(E, W) ← east(E, M) \& east(M, W)
   yes(1) ← east(1, 2) \& east(2, r107)
B: Use east(E, W) ← west(W, E)
   yes(3) ← west(4, 3) \& east(4, r107)
C: Use west(r101, r103)
   nothing unifies with west(r107, r101). Backtrack to C
   Nothing else unifies with west(r101, r107). Backtrack to D
   D: Use east(E, W) ← west(W, E)
      nothing unifies with west(r107, r105). Backtrack to D
      Nothing else unifies with east(r105, r107). Backtrack to C
      C: Use west(r105, r109)
         yes(r111) ← east(r109, r107)
         D: Use east(E, W) ← west(W, E)
            yes(r111) ← west(r107, r109)
            E: Use west(r107, r109)
               yes(r111) ←
```
Function Symbols

- Predicate symbols used to assert that something is true or false
- constants refer to something in the domain
- variables refer to something in the domain
- functions also refer to something in the domain
 - constant *mary* could be mapped to Mary
 - function *motherof(john)* could also be mapped to Mary
- predicate *mother(mary,john)* versus function *motherof(john)*
 - predicate symbol captures truths about the world
 - that mary is john’s mother
 - function symbols just point to someone
Usefulness of Function Symbols

• Can talk about objects in the domain without having a constant symbol for them
• Might want to say \texttt{time(13,15)} to refer to 1:15pm
 - Just need 60 constant symbols rather than 24*60

• Keep in mind: term \textit{function} not used like it is elsewhere in CS
 - Does not capture anything about how time works
 - Capturing knowledge about time is up to predicate symbols and clauses

Further Usefullness of Function Symbols

• Want to reason about paths through a maze
 + How can we represent path 1, 2 versus 1, 2, 6
 + Make constant for each path: \texttt{patha} and \texttt{pathb}
 + Define facts:
 \begin{align*}
 \text{start(pathb,1)} \\
 \text{after(pathb,1,2)} \\
 \text{after(pathb,2,6)}
 \end{align*}

• But all paths must be predefined in the KB
 - Infinite number of possible paths (including cycles)
• Can use functions to refer to a path by referring to its elements
 - Functions have a fixed number of arguments
 + So cannot use \texttt{path(1,2)} \texttt{path(1,2,6)}
 - Instead, make path one cell at a time: \texttt{p(6,p(2,p(1,null)))}
 + constant \texttt{null} represents an empty path
 + function \texttt{p(T,R)} refers to path whose top element is \texttt{T} and rest of path is \texttt{R}
Function Syntax in Datalog

- **Function symbol** is a token starting with lowercase letter
- **Term** is either a variable, constant or of the form \(f(t_1, \ldots t_n) \)
 - Where \(f \) is a function symbol and the \(t_i \)'s are terms
- Terms can only appear inside of predicates (arbitrarily nested)
 - Cannot appear alone in a KB, as part of a body, or as a head of a clause

Semantics of Function Symbols

- \(\phi \) used to just map constants to objects in the domain
- \(\phi \) also maps n-ary function \(f \) to \(D^n \rightarrow D \)
 - Notice that it is defined as mapping \(D^n \) to \(D \), not constants\(^n\)
 - Hence, there can be objects in the domain that might not have a constant for them, but can only be referred to with function symbols
- Interpretations no longer finite
 - One 1-ary function symbol can name an infinite number of objects
 - Example
 - Constant 0
 - Successor function \(s : D \rightarrow D \)
 - Can specify all of the natural numbers: 0, \(s(0) \), \(s(s(0)) \), \(s(s(s(0))) \), ...

Knowledge about Lists

- Can represent lists by:
 - constant null represents an empty path
 - function p(T,R) refers to path where T is top element and R is rest of path
 - example: p(6,p(2,p(1,null)))

- Can we write a predicate member(X,List)?

\[
\text{member}(X,p(Top,Rest)) \leftarrow \text{member}(X,Rest)
\]

- True if \(X \) is in list \(\text{List} \)
Building Data Structures

- Can use function symbols to build other data structures

- Tree data structure:
 - A labeled tree is either a node `node(Name, LeftTree, RightTree)`
 - or a leaf `l(Name)`
 - Example:

 \[
 node(n1, node(n2, l(l1), l(l2)), node(n3, l(l3), node(n4, l(l4), l(l5))))
 \]

```
  n1
  |   \\
  n2  n3
  |   |
  l1 l2 l3 n4
  |   |
  l4 l5
```

Clauses about Trees

- `has_leaf(L, T)` is true if \(L \) is the label of a leaf in tree \(T \)
- `has_leaf(L, l(L))`.
- `has_leaf(L, node(N, LT, RT)) ← has_leaf(L, LT).`
- `has_leaf(L, node(N, LT, RT)) ← has_leaf(L, RT).`
Clauses about Numbers

- Let $lt(X, Y)$ be true when $X < Y$
 - To define it in Datalog, need to capture facts and rules about it that capture its entire meaning
 - What is a comprehensive fact about lt that we can write?
 - Fact should have lt as its predicate
 - Should include an $s(\ldots)$
 - Make it as general as possible
 - What is a rule that we can write about lt
 - Should have lt on right and left hand side
 - Atom on right hand side should be simpler than left hand side
 - By repeatedly applying the rule, should end at fact
 - Think of this as the induction step in a proof by induction

Overview

- Variables
- Top-down Proof Procedure with Variables
- Top-Down Reasoning Procedure
- Function Symbols
 ⇒ Proof Procedures
- Top-Down Reasoning Procedure
Top Down Proof Procedure

- Just have to make sure procedure that determines MGU works with function symbols
- Need to be careful about normal form
 - Substitution is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\} \)
 - Each \(V_i \) is a distinct variable and each \(t_i \) is a term
 - A substitution is in normal form if no \(V_i \) appears in any \(t_j \)
- Most substitutions can be put into normal form
 \(\{X/Z, Z/a\} \Rightarrow \{X/a, Z/a\} \)
 \(\{X/Z, Z/X\} \Rightarrow \{X/Z\} \)
- Can any substitution be put into normal form?
 - What about \(\{X/f(X)\} \)?

Bottom-Up Proof Procedure with Variables

- Previously, had bottom-up proof procedure replace clauses with variables with all ground instances
- But, function symbols cause infinite number of terms
- But it is countable
 - There is a way to enumerate all terms
 - Just as there is a way to enumerate all rational numbers
 - Make sure procedure fairly introduces ground instances

\[
\begin{align*}
1/1 & \quad 2/1 & \quad 3/1 & \quad 4/1 & \ldots \\
1/2 & \quad 2/2 & \quad 3/2 & \quad 4/2 & \ldots \\
1/3 & \quad 2/3 & \quad 3/3 & \quad 4/3 & \ldots \\
1/4 & \quad 2/4 & \quad 3/4 & \quad 4/4 & \ldots \\
\ldots & \quad \ldots & \quad \ldots & \quad \ldots & \ldots \\
\end{align*}
\]
Normal Form of Substitutions

- \{X/f(X)\} cannot be put into normal form.
 - So is normal form too restrictive?
 - What would this substitution even mean?

- Consider \(KB = lt(X, s(X)) \)
 \(lt(X, s(Y)) \leftarrow lt(X, Y) \).

- Does \(lt(X, X) \) follow from \(KB \)
 - Does \(lt(X_1, X_1) \) unify with \(lt(X, s(X)) \)?
 + Note we made up new variables so we don’t get confused
 - The unifier \(\{X_1/X, X/s(X)\} \) sort of makes them the same
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called occurs check

Algorithm for Finding MGU (Not in textbook)

- Take two expressions (no variables in common)
 - Compare them token for token (left to right)
- If one has a connector, other must have same one
- If one has \(n \)-ary symbol \(p \), other must as well
- For each term of predicates and functions
 - If both terms are same variable, don’t need to do anything
 - If one has variable \(V \) and other has term \(t \), add \(V/t \) to substitution
 + \(t \) should not contain \(V \) (occurs check)
 + Apply \(V/t \) to rest of both expressions and to any terms in substitution list
 + Variable \(V \) should now only be in substitution once (on left hand side)
 - Otherwise, if one has constant \(c \), other must as well
 - Otherwise, both are functions, and make sure they unify (recursive)
Examples

\[p(X, Y) \text{ and } p(Z, Z) \]

\[p(X, X) \text{ and } p(f(A, c), B) \]

\[p(X, X) \text{ and } p(B, f(A, c)) \]

\[p(X, X) \text{ and } p(B, f(A, B)) \]
Top-Down Proof Procedure (Repeat)

• Sequence of $\gamma_0, \gamma_1, ..., \gamma_n$
• γ_0 is answer clause corresponding to original query
• γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
 - Choose an atom in body of γ_{i-1}
 - Choose clause in KB whose head will unify with the chosen atom
 - Resolve γ_{i-1} with clause
• γ_n is an answer, and so is of the form $yes(t_1, ..., t_k)\leftarrow$.

Example Proof with Functions

• Defined $\text{has leaf}(L, T)$ as true if L is label of leaf in tree T

 $\text{has leaf}(L, L(L))$.
 $\text{has leaf}(L, n(N, LT, RT))\leftarrow\text{has leaf}(L, LT)$.
 $\text{has leaf}(L, n(N, LT, RT))\leftarrow\text{has leaf}(L, RT)$.

• Prove l_4 is a leaf of $n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$

 $yes \leftarrow \text{has leaf}(l_4, n(n1, n(n2, l(l1), l(l2)), n(n3, l(l3), n(n4, l(l4), l(l5))))$).
 1st clause in KB does not unify
 2nd clause in KB fails
 3rd clause in KB unifies $yes \leftarrow \text{has leaf}(l_4, n(n3, l(l3), n(n4, l(l4), l(l5))))$.
 1st clause in KB does not unify
 2nd clause in KB fails $yes \leftarrow \text{has leaf}(l_4, l(l3))$.
 3rd clause in KB unifies $yes \leftarrow \text{has leaf}(l_4, n(n4, l(l4), l(l5)))$.
 1st clause in KB does not unify
 2nd clause in KB unifies $yes \leftarrow \text{has leaf}(l_4, l(l4))$.
 3rd clause in KB unifies $yes \leftarrow \text{has leaf}(l_4, l(l5))$.
 1st clause in KB does $yes \leftarrow$.

A

B

C

D
Summary of Proof

\[\text{yes - has leaf}(4, n(n_1, n(n_2, l(1)), l(2))), n(n_3, l(3), n(n_4, l(4), l(5)))]. \]

1st clause in KB does not unify
2nd clause in KB unifies \[\text{yes - has leaf}(4, n(n_1, l(1)), l(2))]. \] \(A \)
 \begin{itemize}
 \item 1st clause in KB does not unify
 \item 2nd clause in KB unifies \[\text{yes - has leaf}(4, l(1))]. \] \(B \)
 \end{itemize}

2nd clause in KB fails
3rd clause in KB unifies \[\text{yes - has leaf}(l(1), l(2))]. \] \(B \)

No clause in KB unifies. Backtrack to A.

2nd clause in KB fails
3rd clause in KB unifies \[\text{yes - has leaf}(4, n(n_3, l(3), n(n_4, l(4), l(5)))]. \] \(C \)
 \begin{itemize}
 \item 1st clause in KB does not unify
 \item 2nd clause in KB unifies \[\text{yes - has leaf}(4, l(15))]. \] \(C \)
 \end{itemize}

No clause unifies. Backtrack to C.

2nd clause in KB fails \[\text{yes - has leaf}(4, l(13))]. \] \(C \)

3rd clause in KB unifies \[\text{yes - has leaf}(4, n(n_4, l(4), l(15)))]. \]
 \begin{itemize}
 \item 1st clause in KB does not unify
 \item 2nd clause in KB unifies \[\text{yes - has leaf}(4, l(14))]. \] \(D \)
 \end{itemize}

1st clause in KB does. \[\text{yes -}. \] \(D \)

Final Word on Functions

- Functions let you refer to things without having explicit names for them
 - Can refer to any subtree, by describing by functions
 \[\text{It is the subtree with node } n_1 \text{ which right branch ... and left branch} ... \]

- Unification does the right thing with functions
 - Just do hierarchal symbol matching
 - Makes it easy to reason about parts of the subtree by symbol matching