Overview

⇒ Semantics
 • Queries
 • Proof Procedures
 • Bottom-up Ground Proof Procedure
 • Top-down Ground Proof Procedure

Review

• An interpretation maps any clause to either true or false
 - It is a complete mapping
• A model I of KB is an interpretation that maps every clause in KB to true
• KB ⊨ g iff every model of KB makes g true
Example

- \(KB: \)
 \[
 \text{female}(\text{sally}) \\
 \text{person}(X) \leftarrow \text{female}(X)
 \]
- Prove \(KB \models \text{person}(\text{sally}) \)
- What does \(KB \models \text{person}(\text{sally}) \) mean?
 - Means that if interpretation \(I \) models \(KB \) then it models \(\text{person}(\text{sally}) \)
 - Could prove this by checking all interpretations
- Let’s do proof instead
 - Let \(I \) be a model of \(KB \), prove that \(I \) makes \(\text{person}(\text{sally}) \) true

A Semantic Proof

- Let \(I = \{ D, \phi, \pi \} \) be a model of \(KB = \{ \text{female}(\text{sally}) \text{person}(X) \leftarrow \text{female}(X) \} \)
 - So \(<\phi(\text{sally})> \in \pi(\text{female}) \)
 - Say \(\phi(\text{sally}) = s \), so \(<s> \in \pi(\text{female}) \) (1)
 - \(\text{person}(X) \leftarrow \text{female}(X) \) must be true for \(I_\rho \) for any var. assign. \(\rho \) (2)
- Consider variable assignment \(\rho \) where \(\rho(X) = s \)
 - If \(\text{female}(X) \) true for \(I_\rho \) then so must \(\text{person}(X) \) (from (2)) (3)
 - \(\rho(X) = s \) and \(<s> \in \pi(\text{female}) \) so \(\text{female}(X) \) is true for \(I_\rho \) (4)
 - So \(\text{person}(X) \) must be true for \(I_\rho \) (from (3) and (4))
 - \(\rho(X) = s \) so \(<s> \in \pi(\text{person}) \) (5)
 - Since \(\phi(\text{sally}) = s \), \(\text{person}(\text{sally}) \) is true under \(I \)
More on Variables in Clauses (pg. 42)

• Say $parent(X, Y) \leftarrow father(X, Y)$ is in KB
 - Implicit universal quantifiers around it
 - Anytime that $father(X, Y)$ is true, so must $parent(X, Y)$

• Say $grandfather(X, Y) \leftarrow father(X, Z) \land parent(Z, Y)$ in KB
 - This clause is true for all X, Y, Z
 - $\forall X \ Y \ Z \ (grandfather(X, Y) \leftarrow father(X, Z) \land parent(Z, Y))$.
 - Z only appears in the body

• How does Z work here (variable just in the body)?
 - For any X and Y, if we find Z that makes body true, head must be true
 - Now it seems that Z is just existentially quantified
 - We just need to find one Z for each X and Y, not ensure it is true for all Z
 - $\forall XY \ (grandfather(X, Y) \leftarrow (\exists Z \ father(X, Z) \land parent(Z, Y)))$.

Overview

• Semantics
 ⇒ Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure
Queries with Variables

- You might not only want to check if something is true or false, but what value makes it true

\[KB: \]
- father(william, ted)
- parent(X, Y) ← father(X, Y)

- Example: ?parent(X, ted)
 - Who is Ted's parent?
 - Could transform this to yes ← parent(X, ted)
 - But, let's capture the variables in the body: yes(X) ← parent(X, ted)

- An answer is either
 - **instance** of 'yes' that is a logical consequence of \(KB \): yes(william)
 - or **no** if no instance is a logical consequence of KB
Overview

- Semantics
- Queries
 ⇒ Proof Procedures
- Bottom-up Ground Proof Procedure
- Top-down Ground Proof Procedure

Semantics Is Not Enough

- We have KB
 - We know what conclusions are valid to make
 - $KB \models g$ iff g is true in all models of KB
 - Can extend this so user can ask queries with variables as well
- But, don’t yet have a mechanical way of checking if $KB \models g$
 - Checking all interpretations is very expensive
 - Can’t just check the user’s intended interpretation
 + Computer can only access the KB
Proof Procedures

- **Proof**: a mechanically derivable demonstration that a formula logically follows from a \(KB \)
- **Proof procedure**: an algorithm that constructs proofs
 - \(KB \vdash g \) means \(g \) can be derived from \(KB \) with the proof procedure
- Proof procedure can be nondeterministic
 - So as to simplify the specification
 - Still need to specify an actual implementation
- Properties of Proof Procedure
 - **Soundness**: if \(KB \vdash g \) then \(KB \models g \)
 - **Completeness**: if \(KB \models g \) then \(KB \vdash g \)
- Terminology:
 - semantic proof: \(\models \), logically follows, logically entails, models
 - syntactic proof: \(\vdash \), derives

Two Types of Proof Procedures

![Diagram of Two Types of Proof Procedures]

- **Bottom-Up Forward-Chaining**
- **Top-Down Backward-Chaining**
Bottom-up Ground Proof Procedure

- For now, only consider ground facts and ground rules
 - no variables
- Bottom-up or forward chaining procedure:
 starts from KB and works towards query
- Forward chaining rule
 - If $h ← b_1 ∧ ... ∧ b_m$ is a clause in the KB
 - and each b_i has been derived
 - then h can be derived
- Forward chaining rule also works if h is a fact in KB ($m = 0$)
 - Lets you derive h
- Call the set of derivables the consequence set (C)
Non-deterministic Specification

- Haven’t specified the exact order that things should be done in
 - What order should we pick clauses from KB to try?

Example

\[
\begin{align*}
a & \leftarrow b \land c. \\
b & \leftarrow d \land e. \\
b & \leftarrow g \land e. \\
c & \leftarrow e. \\
d. \\
e. \\
\end{align*}
\]

- What is the consequence set?
Is it Complete?

- Does C have every ground atom that logically follows from KB?
- We need to prove something about consequence sets
- Let C be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same C, no matter what order C was generated
- Define I such that for atom h
 - I(h) is true if h ∈ C
 - Otherwise, I(h) is false
 - I is an interpretation because it defines a subset of ground atoms as being true, and the rest as false
- I is an interpretation, but is it also a model of KB?
 - i.e. for every g ∈ KB, is I(g) true?

Is it Sound?

- Does everything in C logically follow from KB?
- Proof by contradiction: assume KB ⊢ g but KB ⫬ g
 - g is the result of a finite number of derivations
 - Without loss of generality, assume g is first one in derivation such that KB ⫬ g
 - Now g was derived by a cause g ← b₁∧...∧bₘ in KB where the bᵢ’s have already been derived
 - Since g was first bad one, all bᵢ’s logically follow from KB
 - So b₁∧...∧bₘ logically follows from KB (from definition of ∧)
 - g ← b₁∧...∧bₘ logically follows from KB since it is in the KB
 - Using definition of ←, can show that g must logically follow from KB
 - Contradiction
Final Step in Completeness Proof

- Let g be atomic and $KB \models g$
 - Need to make sure that $KB \vdash g$
- Since $KB \models g$, g must be in every model of KB
- So, it is in the interpretation defined by the Consequence set
- Since g is atomic and it is true in the interpretation, it must be in consequence set
- So $KB \vdash g$
Overview

- Semantics
- Queries
- Proof Procedures
- Bottom-up Ground Proof Procedure

⇒ Top-down Ground Proof Procedure

Top-Down Ground Proof Procedure

- Alternative to bottom-up (forward-chaining)
- Top-down (backward-chaining)
 - Start with goal, work toward facts in KB
- Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
\text{a}_i & \leftarrow b_1 \land \ldots \land b_p \\
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Now for some definitions

- **Answer clause** is $yes ← a_1 ∧ ... ∧ a_m$
- **Answer** is answer clause with $m = 0$
- **Derivation** of a query $? q_1 ∧ ... ∧ q_k$ from KB is a sequence of answer clauses $γ_0, γ_1, ..., γ_n$
 - $γ_0$ is the answer clause corresponding to the original query
 - $γ_i$ is obtained by resolving $γ_{i-1}$ with a clause in KB
 - $γ_n$ is the answer
- **Nondeterminism**
 - In choosing which clause from KB to resolve with
 - Can find all derivations by systematically considering all different choices (see Chapter 4)

Example

- KB
 - $a ← b ∧ c.$
 - $b ← d ∧ e.$
 - $b ← g ∧ e.$
 - $c ← e.$
 - $d.$
 - $e.$
 - $f ← a ∧ g.$
 - $? a.$
Bottom-Up versus Top-Down

- Any top-down proof can be converted to a bottom-up proof.
- Any bottom-up proof can be converted to a top-down proof.
- So, top-down proof procedure is complete and sound.

- There are many other ways of doing proofs
 - e.g. Unit resolution
 - We will explore some of these later in the course
 - But top-down and bottom-up are sufficient for datalog