Overview

⇒ Semantics
• Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure

Review

• An interpretation maps any clause to either true or false
 - It is a complete mapping
• A model I of KB is an interpretation
 that maps every clause in KB to true
• $KB \models g$ iff every model of KB makes g true
Example

• KB:
 female(sally)
 person(X) ← female(X)

• Prove KB |= person(sally)

• What does KB |= person(sally) mean?
 - Means that if interpretation I models KB then it models person(sally)
 - Could prove this by checking all interpretations

• Let’s do proof instead
 - Let I be a model of KB, prove that I makes person(sally) true

A Semantic Proof

• Let I = {D, φ, π} be a model of KB = {female(sally)
 person(X) ← female(X) }
 - So <φ(sally)> ∈ π(female)
 - Say φ(sally) = s, so <s> ∈ π(female) (1)
 - person(X) ← female(X) must be true for Iρ for any var. assign. ρ (2)

• Consider variable assignment ρ where ρ(X) = s
 - If female(X) true for Iρ then so must person(X) (from (2)) (3)
 - ρ(X) = s and <s> ∈ π(female) so female(X) is true for Iρ (4)
 - So person(X) must be true for Iρ (from (3) and (4))
 - ρ(X) = s so <s> ∈ π(person) (5)
 - Since φ(sally) = s, person(sally) is true under I
More on Variables in Clauses (pg. 42)

- Say $parent(X, Y) \leftarrow father(X, Y)$ is in KB
 - Implicit universal quantifiers around it
 - Anytime that $father(X, Y)$ is true, so must $parent(X, Y)$
- Say $grandfather(X, Y) \leftarrow father(X, Z) \land parent(Z, Y)$ in KB
 - This clause is true for all X, Y, Z
 - $\forall X Y Z \ (grandfather(X, Y) \leftarrow father(X, Z) \land parent(Z, Y))$.
 - Z only appears in the body
- How does Z work here (variable just in the body)?
 - For any X and Y, if we find Z that makes body true, head must be true
 - Now it seems that Z is just existentially quantified
 - We just need to find one Z for each X and Y, not ensure it is true for all Z
 - $\forall XY \ (grandfather(X, Y) \leftarrow (\exists Z \ father(X, Z) \land parent(Z, Y)))$.

Overview

- Semantics
 ⇒ Queries
- Proof Procedures
- Bottom-up Ground Proof Procedure
- Top-down Ground Proof Procedure
Ground Queries

- A query is a way to ask if a body is a logical consequence of the knowledge base: \(? b_1 \land \ldots \land b_m\)
- Ground query (no variables) has the answer
 - “yes” if the body is a logical consequence of the KB
 - “no” if the body is not a logical consequence of the KB
 - We do not distinguish between it being false in all models or just some
 - Cannot tell if query is false in the intended interpretation
- Can do query-answering by:
 - Transform query \(b_1 \land \ldots \land b_m\) into \(yes \leftarrow b_1 \land \ldots \land b_m\)
 - Add (temporarily) \(yes \leftarrow b_1 \land \ldots \land b_m\) to KB
 - Check if \(yes\) is a logical consequence of KB
 - This lets us view queries as just finding consequences from a \(KB\)

Queries with Variables

- You might not only want to check if something is true or false, but what value makes it true

\(KB:\)
\[
\begin{align*}
\text{father(william,ted)} \\
\text{parent(X,Y) } \leftarrow \text{father(X,Y)}
\end{align*}
\]
- Example: \(?\text{parent(X,ted)}\)
 - Who is Ted’s parent?
 - Could transform this to \(yes \leftarrow \text{parent(X,ted)}\)
 - But, let’s capture the variables in the body: \(yes(X) \leftarrow \text{parent(X,ted)}\)
- An answer is either
 - \textbf{instance} of ‘yes’ that is a logical consequence of \(KB\): \(yes(william)\)
 - or \textbf{no} if no instance is a logical consequence of KB
Overview

- Semantics
- Queries
 ⇒ Proof Procedures
- Bottom-up Ground Proof Procedure
- Top-down Ground Proof Procedure

Semantics Is Not Enough

- We have KB
 - We know what conclusions are valid to make
 - $KB \models g$ iff g is true in all models of KB
 - Can extend this so user can ask queries with variables as well
- But, don’t yet have a mechanical way of checking if $KB \models g$
 - Checking all interpretations is very expensive
 - Can’t just check the user’s intended interpretation
 + Computer can only access the KB
Proof Procedures

- **Proof**: a mechanically derivable demonstration that a formula logically follows from a KB
- **Proof procedure**: an algorithm that constructs proofs
 - $KB \vdash g$ means g can be derived from KB with the proof procedure
- Proof procedure can be nondeterministic
 - So as to simplify the specification
 - Still need to specify an actual implementation
- Properties of Proof Procedure
 - **Soundness**: if $KB \vdash g$ then $KB \models g$
 - **Completeness**: if $KB \models g$ then $KB \vdash g$
- Terminology:
 - semantic proof: \models, logically follows, logically entails, models
 - syntactic proof: \vdash, derives

Two Types of Proof Procedures

![Diagram of Proof Procedures](image-url)
Overview

- Semantics
- Queries
- Proof Procedures

⇒ Bottom-up Ground Proof Procedure
- Top-down Ground Proof Procedure

Bottom-up Ground Proof Procedure

- For now, only consider ground facts and ground rules
 - no variables
- Bottom-up or forward chaining procedure:
 - starts from KB and works towards query
- Forward chaining rule
 - If $h \leftarrow b_1 \land \ldots \land b_m$ is a clause in the KB
 - and each b_i has been derived
 - then h can be derived
- Forward chaining rule also works if h is a fact in KB ($m = 0$)
 - Lets you derive h
- Call the set of derivables the consequence set (C)
Non-deterministic Specification

- Haven’t specified the exact order that things should be done in
 - What order should we pick clauses from KB to try?

Example

\[
\begin{align*}
 a & \leftarrow b \land c. \\
 b & \leftarrow d \land e. \\
 b & \leftarrow g \land e. \\
 c & \leftarrow e. \\
 d & . \\
 e & .
\end{align*}
\]

- What is the consequence set?
Is it Complete?

- Does C have every ground atom that logically follows from KB?
- We need to prove something about consequence sets
- Let C be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same C, no matter what order C was generated
- Define I such that for atom h
 - I(h) is true if h ∈ C
 - Otherwise, I(h) is false
 - I is an interpretation because it defines a subset of ground atoms as
 being true, and the rest as false
- I is an interpretation, but is it also a model of KB?
 - i.e. for every g ∈ KB, is I(g) true?

Is it Sound?

- Does everything in C logically follow from KB?
- Proof by contradiction: assume KB ⊨ g but KB ⊬ g
 - g is the result of a finite number of derivations
 - Without loss of generality, assume g is first one in derivation such that
 KB ⊬ g
 - Now g was derived by a cause g ← b₁∧...∧bₘ in KB where the bᵢ’s
 have already been derived
 - Since g was first bad one, all bᵢ’s logically follow from KB
 - So b₁∧...∧bₘ logically follows from KB (from definition of ∧)
 - g ← b₁∧...∧bₘ logically follows from KB since it is in the KB
 - Using definition of ←, can show that g must logically follow from KB
 - Contradiction
Proof that Consequence Set is a Model

• Proof by Contradiction: Let $g \in KB$ but where $I(g)$ is false
 - Since $g \in KB$, g must have the form $h \leftarrow b_1 \land \ldots \land b_m$
 - So $h \leftarrow b_1 \land \ldots \land b_m$ is false in I
 + Remember, definition of \leftarrow comes from Datalog, not I
 - So h must be false in I and $b_1 \land \ldots \land b_m$ must be true in I
 - If $b_1 \land \ldots \land b_m$ is true in I, each individually must be true in I
 + Remember, definition of \land comes from Datalog, not I
 - So, all of the b_i must be in C (due to how we defined I)
 - Since all b_i in C and $h \leftarrow b_1 \land \ldots \land b_m$ is in KB
 bottom up algorithm must have applied this rule and hence $h \in C$
 - Hence h is true in I
 - Contradiction

Final Step in Completeness Proof

• Let g be atomic and $KB \models g$
 - Need to make sure that $KB \models g$
• Since $KB \models g$, g must be in every model of KB
• So, it is in the interpretation defined by the Consequence set
• Since g is atomic and it is true in the interpretation, it must be in consequence set
• So $KB \models g$
Overview

- Semantics
- Queries
- Proof Procedures
- Bottom-up Ground Proof Procedure

⇒ Top-down Ground Proof Procedure

Top-Down Ground Proof Procedure

- Alternative to bottom-up (forward-chaining)
- Top-down (backward-chaining)
 - Start with goal, work toward facts in KB
- Definite Clause Resolution for Ground Case

\[
\begin{align*}
\text{yes} & \leftarrow a_1 \land \ldots \land a_m \\
\text{~} & \\
\text{~} & \leftarrow b_1 \land \ldots \land b_p \\
\text{yes} & \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\end{align*}
\]
Now for some definitions

- **Answer clause** is $yes \leftarrow a_1 \land \ldots \land a_m$
- **Answer** is answer clause with $m = 0$
- **Derivation** of a query $? q_1 \land \ldots \land q_k$ from KB is a sequence of answer clauses $\gamma_0, \gamma_1, \ldots, \gamma_n$
 - γ_0 is the answer clause corresponding to the original query
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB
 - γ_n is the answer
- **Nondeterminism**
 - In choosing which clause from KB to resolve with
 - Can find all derivations by systematically considering all different choices
 (see Chapter 4)

Example

- KB
 - $a \leftarrow b \land c$.
 - $b \leftarrow d \land e$.
 - $b \leftarrow g \land e$.
 - $c \leftarrow e$.
 - d.
 - e.
 - $f \leftarrow a \land g$.
 - $?a$.
Bottom-Up versus Top-Down

<table>
<thead>
<tr>
<th>KB</th>
<th>Top-Down</th>
<th>KB Rule</th>
<th>Bottom-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \leftarrow b \land c$</td>
<td>$yes \leftarrow a$</td>
<td>$a \leftarrow b \land c$</td>
<td>$a \in C$</td>
</tr>
<tr>
<td>$b \leftarrow d \land e$</td>
<td>$yes \leftarrow b \land c$</td>
<td>$b \leftarrow d \land e$</td>
<td>$C = {e, c, d, b, a}$</td>
</tr>
<tr>
<td>$b \leftarrow g \land e$</td>
<td>$yes \leftarrow d \land e \land c$</td>
<td>d</td>
<td>$C = {e, c, d}$</td>
</tr>
<tr>
<td>$c \leftarrow e$</td>
<td>$yes \leftarrow e \land c$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e, c}$</td>
</tr>
<tr>
<td>d</td>
<td>$yes \leftarrow e$</td>
<td>c</td>
<td>$C = {e, c}$</td>
</tr>
<tr>
<td>e</td>
<td>$yes \leftarrow c$</td>
<td>$c \leftarrow e$</td>
<td>$C = {e, c}$</td>
</tr>
<tr>
<td>$f \leftarrow a \land g$</td>
<td>$yes \leftarrow e$</td>
<td>e</td>
<td>$C = {e}$</td>
</tr>
</tbody>
</table>

$?a$

Bottom-up versus Top-down

- Any top-down proof can be converted to a bottom-up proof.
- Any bottom-up proof can be converted to a top-down proof.
- So, top-down proof procedure is complete and sound.

- There are many other ways of doing proofs
 - e.g. Unit resolution
 - We will explore some of these later in the course
 - But top-down and bottom-up are sufficient for datalog