Overview

⇒ Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics

Previous Class

• Introduced a task domains: robot delivery and wiring
• Introduced the symbolic approach
 - Symbols have meaning to the knowledge engineer
 - Symbols used to build a knowledge base that computer is told about
 + Facts about the world
 + Rules about the world
 - Computer reasons with the facts and rules to make new conclusions
Different RRS’s

- Different RRS’s
 - With different syntaxes
 + Actually different connectors: ways to build complex expressions
 - Or with different semantics for connectives
- Different RRS’s good for different domains
- The richer the syntax, the more difficult the reasoning procedure
 ⇒ Choose the simplest RRS possible for your application
Simplifying Assumptions of Initial RRS

• An agent’s knowledge can be usefully described in terms of individuals and relations among individuals
• An agent’s knowledge base consists of definite and positive statements
• The environment is static
• Only a finite number of individuals of interest in the domain
• Each individual can be given a unique name
 ⇒ Datalog

Overview

• Representation and Reasoning System
 ⇒ Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
Syntax of Datalog

- Variable
 - starts with upper-case letter
- Constant
 - starts with lower-case letter or is a sequence of digits (numeral)
- Predicate symbol
 - starts with lower-case letter
- Term
 - either a variable or a constant
- Atomic symbol (atom)
 - of the form p or $p(t_1, \ldots, t_n)$ where p is a predicate symbol and t_i are terms

More Syntax of Datalog

- Definite Clause
 - either an atomic symbol (a fact) or of the form $a \leftarrow b_1 \land \ldots \land b_m$
- Query
 - of the form $?b_1 \land \ldots \land b_m$
- Knowledge Base
 - set of definite clauses

→ Syntax allows us to write sentences about the world
 - Whether sentences are true or not depends on what the symbols mean, which will be specified by the semantics
Example

- Knowledge base
 - `male(william)`
 - `male(george)`
 - `female(sally)`
 - `father(william, george)`
 - `father(george, sally)`
 - `person(X) ← female(X)`
 - `person(X) ← male(X)`
 - `parent(X, Y) ← father(X, Y)`
 - `grandfather(Z, X) ← father(Z, Y) ∧ parent(Y, X)`

- What are the constants?
- What are the predicate symbols?
- What are the variables?
- Whether knowledge base is correct depends on semantics
Interpretation

An interpretation is a triple $I = (D, \phi, \pi)$ where

- D is the domain, a nonempty set. Elements of D are individuals
- ϕ maps each constant to an element of D
 - Constant c denotes individual $\phi(c)$.
- π maps each n-ary predicate symbol to subset of D^n
 - Alternatively, can think of π as mapping each tuple D^n to true or false
 - NOTE: it does not map it to a subset of constants
 - Common mistake, don’t make it on your homework

Semantics

Semantics concerns two things

- Set of individuals in the domain, and relations between them
 - What individuals and relations you choose depends on what you want to reason about
 - Individuals could even be abstract things like colors, if that is what you want to reason about
- How constants and predicate symbols in the syntax correspond to the individuals and relations in the domain

We call this an interpretation:

• A domain, and a mapping from the syntax to the domain
Example Interpretation

- D is the set of people
 - William, George, Sally
 - It is the actual people, not the names
- ϕ maps constants of syntax
to objects in the domain
 - $\phi(william) = William$
 - ...
- Knowledge Engineer decides D
 and mapping of all constants to D

Example Continued

- William and George are male, Sally is female
- Lets have π map
 - $male$ to $\{<William>,<George>\}$
 - $female$ to $\{<Sally>\}$
- Knowledge Engineer decides on mapping of predicates
 - Must decide on the mapping for all predicates
 - Hence, must do mapping for $male$, even if no facts in KB about $male$
- This is an example of an *intended interpretation*:
 - The interpretation that the knowledge engineer has in mind when coming up with language and knowledge base
Second Example

- **Example:** (focus on all interpretations, not just intended one)
 - Language with constants \(a \) and \(b \) and 1-ary predicate \(female(__) \)
 - Domain with \(D = \{ x, y, z \} \)
 - How many different \(\phi \)'s?

<table>
<thead>
<tr>
<th>(\phi_i(a))</th>
<th>(\phi_i(b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_1)</td>
<td></td>
</tr>
<tr>
<td>(\phi_2)</td>
<td></td>
</tr>
<tr>
<td>(\phi_3)</td>
<td></td>
</tr>
<tr>
<td>(\phi_4)</td>
<td></td>
</tr>
<tr>
<td>(\phi_5)</td>
<td></td>
</tr>
<tr>
<td>(\phi_6)</td>
<td></td>
</tr>
<tr>
<td>(\phi_7)</td>
<td></td>
</tr>
<tr>
<td>(\phi_8)</td>
<td></td>
</tr>
<tr>
<td>(\phi_9)</td>
<td></td>
</tr>
</tbody>
</table>

Example Continued

- How many \(\pi \)'s?

<table>
<thead>
<tr>
<th>(x \in \pi_i(female))</th>
<th>(y \in \pi_i(female))</th>
<th>(z \in \pi_i(female))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi_8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How many different interpretations are there altogether (different combinations of \(\phi \) and \(\pi \))?
Determining Truth of Ground Atoms in I

- Ground atom has no variables
- $p(t_1, ..., t_n)$ maps to true if $(\phi(t_1), ...\phi(t_n)) \in \pi(p)$ otherwise to false
- What does $\text{male}(\text{george})$ map to?
 - $\phi(\text{george}) = \text{George}$
 - $\pi(\text{male}) = \{<\text{William}>,<\text{George}>\}$
 - $<\text{George}> \in \{<\text{William}>,<\text{George}>\}$
 - So it maps to true
- For predicates without arguments
 - $\pi(p)$ is either the set with the empty tuple $\{\}\$ or it is empty $\{\}$
 - Semantics of Ground Atoms comes from interpretation

Semantics of Connectives

- Still need to specify what ‘\land’ and ‘\leftarrow’ mean

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \leftarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

- Nota bene!
 + $p \leftarrow q$ is true when both p and q are false
 + $p \land q$ doesn’t always correspond to ‘english’ meaning
- Thus $h \leftarrow b_1 \land ... \land b_m$ is false in interpretation I
 if h is false in I and each b_i is true in I
 - Semantics of ‘\land’ and ‘\leftarrow’ part of Datalog
Example

- Is $\text{male}(\text{george}) \land \text{female}(\text{sally})$ true in I?

- Is $\text{male}(\text{george}) \leftarrow \text{female}(\text{sally})$ true in I?

- Is $\text{male}(\text{george}) \leftarrow \text{female}(\text{william})$ true in I?

- Is $\text{female}(\text{george}) \leftarrow \text{male}(\text{william})$ true in I?

Limitations of Datalog

$\text{male}(\text{george})$.
$\text{female}(\text{sally})$.
...

- Even if every object is male or female, both predicates needed
 - Datalog does not include an operator that means negation
- Cannot write a rule that ensures just one of male and female is true for any person
 - Up to knowledge engineer to ensure each person is just one of them
 - More expressive formalisms can handle this (negative knowledge)
Semantics & Variables

• How do we interpret clauses such as
 \[\text{person}(X) \leftarrow \text{female}(X) \]

• Clause is true if it is true for all values of \(X \)
 - \(\text{person}(X) \) must be true whenever \(\text{female}(X) \) is true
 - Remember, knowledge engineer had to specify mapping for all predicates, even room
 - \(\pi(\text{female}) \subseteq \pi(\text{person}) \)

• It really has a universal quantifier
 - For all \(X \) \(\text{female}(X) \leftarrow \text{person}(X) \)

• So, variables have an implicit universal quantifier over the clause
Variable Assignment: Formal Definition

• Define a variable assignment ρ
 - Maps each variable to some object in the domain
• Together ρ and ϕ assign each term to some object in the domain
• Together ρ and interpretation I map every clause to true or false
 + Even ungrounded ones
• Now we can say:
 - A clause is true in an interpretation if it is true for all variable assignments

Example

• Interpretation I
 - $\pi(male) = \{<William>, <George>\}$
 - $\pi(female) = \{<Sally>\}$
 - $\pi(person) = \{<William>, <George>, <Sally>\}$
• Are the following true?
 $\text{person}(X) \leftarrow \text{male}(X)$
 $\text{person}(X) \leftarrow \text{female}(X)$
 $\text{male}(X) \land \text{female}(X)$
 $\text{male}(X) \lor \text{female}(X)$
 $\text{person}(X) \leftarrow \text{female}(X) \land \text{male}(\text{william})$
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics

⇒ Models
• Logical Consequence
• Two Views of Semantics

Sets of Clauses

• A set of clauses is true in an interpretation if each clause is true in the interpretation
 - Note that we universally quantify for the variables over each clause
 - In other words, if two clauses use the same variables, it is the same as if they used different variables

\[
\begin{align*}
\text{person}(X) \leftarrow & \text{male}(X) \\
\text{parent}(X,Y) \leftarrow & \text{father}(X,Y) \\
\text{grandfather}(Z,X) \leftarrow & \text{father}(Z,Y) \land \text{parent}(Y,X)
\end{align*}
\]
Models

• A model of a set of clauses is an interpretation in which all the clauses are true
 - Start with KB and look at what interpretations can be true

• Example KB:
 \[p \leftarrow q. \]
 \[q. \]
 \[\phi(p) \pi(q) \pi(p \leftarrow q) \]

<table>
<thead>
<tr>
<th>Model of KB?</th>
<th>(\pi(p))</th>
<th>(\pi(q))</th>
<th>(\pi(p \leftarrow q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>TRUE</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>(I_2)</td>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>(I_3)</td>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>(I_4)</td>
<td>FALSE</td>
<td>FALSE</td>
<td></td>
</tr>
</tbody>
</table>

Example with constants

• Example: (focus on all interpretations, not just intended one)
 + Language with constants \(a \) and \(b \) and 1-ary predicate \(\text{girl}(_) \)
 + Domain with \(D = \{ x, y, z \} \)
 + 9 \(\phi \)’s and 8 \(\pi \)’s, so 72 interpretations

• How many models of \(KB = \{ \text{girl}(a), \text{girl}(b) \} \)?
 (Checking each would take too long, so lets break down into subcases)
 - Case 1: \(\phi_i(a) = \phi_i(b) \)
 + How many of the 9 \(\phi_i \)’s have \(\phi_i(a) = \phi_i(b) \)
 + When \(\phi_i(a) = \phi_i(b) = x \), which \(\pi \)’s make KB true?
 + So how many models with \(\phi_i(a) = \phi_i(b) \)?
 - Case 2: \(\phi_i(a) \neq \phi_i(b) \)
 + How many of the 9 \(\phi \)?
 + When \(\phi_i(a) = x \) and \(\phi_i(b) = y \), which \(\pi \)’s make the KB true?
 + So how many models with \(\phi_i(a) \neq \phi_i(b) \)?
Logical Consequence

• If KB is a set of clauses and g is a conjunction of atoms,
 g is a logical consequence of KB, written $KB \models g$,
 if g is true in every model of KB.
 - This tells us that our KB, by its definition, always forces g to be true
 - Other terms that mean same thing:
 g logically follows from KB
 KB entails g

• That is, $KB \models g$ if there is no interpretation in which KB is
 true and g is false.

• $KB \not\models g$ if g is not a logical consequence of KB
Example Revisited

- **KB:**
 \[p \leftarrow q. \]
 \[q. \]
 \[\pi(p) \quad \pi(q) \quad \pi(p \leftarrow q) \]
 model of KB?

<table>
<thead>
<tr>
<th>I_0</th>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>I_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td>FALSE</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Does \(KB \models p? \)

Overview

- Representation and Reasoning System
- Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
 \(\Rightarrow \) Two Views of Semantics
User’s View of Semantics

• Choose a task domain: intended interpretation
• Associate constants with individuals you want to name
• For each relation you want to represent, associate a predicate symbol in the language
• Tell the system clauses that are true in the intended interpretation: *axiomatizing the domain*
 - hopefully you tell it enough knowledge about the domain so that it can conclude everything you want it to
• Ask questions about your domain

Computer’s view of semantics

• Computer given the knowledge base
 - Computer doesn’t have access to the intended interpretation
• User asks it a question g
 - Computer should answer true if $KB \models g$
 + g is true in all models, so is true in user’s intended interpretation
 - Otherwise, computer should answer “I don’t know”
 + There is at least one model in which g is false
 + Note g might have been true in user’s intended interpretation. In this case, user didn’t have enough clauses in the KB to sufficiently narrow down the models
• Aside: computer could answer the question by enumerating over all of the possible interpretations (model checking)
 - But number of interpretations grows quickly!!
Summary of Semantics

- User has intended interpretation
 But just tells the computer a small set of facts that hopefully adequately captures the user’s intended interpretation

- Computer answers true if all interpretations that make KB true (models) make the question true
 - Now we have specs for the computer’s reasoning algorithm
 - It should answer yes if $KB \models q$, other answer don’t know