Overview

⇒ Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics

Previous Class

• Introduced a task domains: robot delivery and wiring
• Introduced the symbolic approach
 - Symbols have meaning to the knowledge engineer
 - Symbols used to build a knowledge base that computer is told about
 + Facts about the world
 + Rules about the world
 - Computer reasons with the facts and rules to make new conclusions
A Representation and Reasoning System (RRS) is made up of
- Formal language (syntax):
 + Specifies the legal sentences (the range of things that can be said)
- Semantics:
 + Specifies the meaning of the symbols (for your domain)
 + Specifies what is a correct conclusion
- Reasoning theory or proof procedure:
 + Specification of how an answer can be produced
 + Can be nondeterministic

Implementation of an RRS
- Reasoning procedure
 + Resolves nondeterminism of reasoning theory

Different RRS’s
- Different RRS’s
 - With different syntaxes
 + Actually different connectors: ways to build complex expressions
 - Or with different semantics for connectives
- Different RRS’s good for different domains
- The richer the syntax, the more difficult the reasoning procedure
 ⇒ Choose the simplest RRS possible for your application
Simplifying Assumptions of Initial RRS

• An agent’s knowledge can be usefully described in terms of individuals and relations among individuals
• An agent’s knowledge base consists of definite and positive statements
• The environment is static
• Only a finite number of individuals of interest in the domain
• Each individual can be given a unique name
⇒ Datalog

Overview

• Representation and Reasoning System
 ⇒ Syntax of Datalog
• Semantics of Datalog
• Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics
Syntax of Datalog

- Variable
 - starts with upper-case letter
- Constant
 - starts with lower-case letter or is a sequence of digits (numeral)
- Predicate symbol
 - starts with lower-case letter
- Term
 - either a variable or a constant
- Atomic symbol (atom)
 - of the form p or $p(t_1, ..., t_n)$ where p is a predicate symbol and t_i are terms

More Syntax of Datalog

- Definite Clause
 - either an atomic symbol (a fact) or of the form
 \[a \leftarrow b_1 \land ... \land b_m \]
- Query
 - of the form $\exists b_1 \land ... \land b_m$
- Knowledge Base
 - set of definite clauses

⇒ Syntax allows us to write sentences about the world
- Whether sentences are true or not depends on what the symbols mean,
 which will be specified by the semantics
Example

- Knowledge base
 - male(william)
 - male(george)
 - female(sally)
 - father(william,george)
 - father(george,sally)
 - person(X) ← female(X)
 - person(X) ← male(X)
 - parent(X,Y) ← father(X,Y)
 - grandfather(Z,X) ← father(Z,Y) ∧ parent(Y,X)

- What are the constants?
- What are the predicate symbols?
- What are the variables?
- Whether knowledge base is correct depends on semantics

Overview

- Representation and Reasoning System
- Syntax of Datalog
 ⇒ Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
- Two Views of Semantics
Interpretation

An interpretation is a triple $I = (D, \phi, \pi)$ where

- D the domain, is a nonempty set. Elements of D are individuals
- ϕ maps each constant to an element of D
 - Constant c denotes individual $\phi(c)$.
- π maps each n-ary predicate symbol to subset of D^n
 - Alternatively, can think of π as mapping each tuple D^n to true or false
 - **NOTE**: it does not map it to a subset of constants
 - Common mistake, don’t make it on your homework
Example Interpretation

• D is the set of people
 - William, George, Sally
 - It is the actual people, not the names

• ϕ maps constants of syntax
to objects in the domain
 - $\phi(william) = \text{William}$

• Knowledge Engineer decides D and mapping of all constants to D

Example Continued

• William and George are male, Sally is female

• Lets have π map
 - π maps male to $\{<\text{William}>,<\text{George}>\}$
 - π maps female to $\{<\text{Sally}>\}$

• Knowledge Engineer decides on mapping of predicates
 - Must decide on the mapping for all predicates
 - Hence, must do mapping for male, even if no facts in \mathcal{KB} about male

• This is an example of an intended interpretation:
 - The interpretation that the knowledge engineer has in mind when coming up with language and knowledge base
Second Example

- Example: (focus on all interpretations, not just intended one)
 - Language with constants a and b and 1-ary predicate $\text{female}(_)$
 - Domain with $D = \{x, y, z\}$
 - How many different ϕ’s?

<table>
<thead>
<tr>
<th>$\phi_i(a)$</th>
<th>$\phi_i(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td></td>
</tr>
<tr>
<td>ϕ_2</td>
<td></td>
</tr>
<tr>
<td>ϕ_3</td>
<td></td>
</tr>
<tr>
<td>ϕ_4</td>
<td></td>
</tr>
<tr>
<td>ϕ_5</td>
<td></td>
</tr>
<tr>
<td>ϕ_6</td>
<td></td>
</tr>
<tr>
<td>ϕ_7</td>
<td></td>
</tr>
<tr>
<td>ϕ_8</td>
<td></td>
</tr>
<tr>
<td>ϕ_9</td>
<td></td>
</tr>
</tbody>
</table>

Example Continued

- How many π’s?

<table>
<thead>
<tr>
<th>$x \in \pi_i(\text{female})$</th>
<th>$y \in \pi_i(\text{female})$</th>
<th>$z \in \pi_i(\text{female})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- How many different interpretations are there altogether (different combinations of ϕ and π)?
Determining Truth of Ground Atoms in I

- Ground atom has no variables
- $p(t_1, ..., t_n)$ maps to true if $(\phi(t_1), ..., \phi(t_n)) \in \pi(p)$ otherwise to false
- What does $male(george)$ map to?
 - $\phi(george) = George$
 - $\pi(male) = \{<William>,<George>\}$
 - $<George> \in \{<William>,<George>\}$
 - So it maps to true
- For predicates without arguments
 - $\pi(p)$ is either the set with the empty tuple $\{<>\}$ or it is empty $\{\}$
 - Semantics of Ground Atoms comes from interpretation

Semantics of Connectives

- Still need to specify what \land and \leftarrow mean

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
<th>$p \leftarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

- Nota bene!
 + $p \leftarrow q$ is true when both p and q are false
 + $p \land q$ doesn’t always correspond to ‘english’ meaning
- Thus $h \leftarrow b_1 \land ... \land b_m$ is false in interpretation I
 if h is false in I and each b_i is true in I
 - Semantics of \land and \leftarrow part of Datalog
Limitations of Datalog

- Even if every object is male or female, both predicates needed
 - Datalog does not include an operator that means negation
- Cannot write a rule that ensures just one of \textit{male} and \textit{female} is true for any person
 - Up to knowledge engineer to ensure each person is just one of them
 - More expressive formalisms can handle this (negative knowledge)

Example

- Is \textit{male}(george) \land \textit{female}(sally) true in I?
- Is \textit{male}(george) \leftarrow \textit{female}(sally) true in I?
- Is \textit{male}(george) \leftarrow \textit{female}(william) true in I?
- Is \textit{female}(george) \leftarrow \textit{male}(william) true in I?
Overview

• Representation and Reasoning System
• Syntax of Datalog
• Semantics of Datalog
 ⇒ Adding Variables to Semantics
• Models
• Logical Consequence
• Two Views of Semantics

Semantics & Variables

• How do we interpret clauses such as
 \(\text{person}(X) \leftarrow \text{female}(X) \)

• Clause is true if it is true for all values of \(X \)
 - \(\text{person}(X) \) must be true whenever \(\text{female}(X) \) is true
 - Remember, knowledge engineer had to specify mapping for all predicates, even room
 - \(\pi(\text{female}) \subseteq \pi(\text{person}) \)

• It really has a universal quantifier
 - For all \(X \) \(\text{female}(X) \leftarrow \text{person}(X) \)

• So, variables have an implicit universal quantifier over the clause
Variable Assignment: Formal Definition

- Define a variable assignment ρ
 - Maps each variable to some object in the domain
- Together ρ and ϕ assign each term to some object in the domain
- Together ρ and interpretation I map every clause to true or false
 + Even ungrounded ones
- Now we can say:
 - A clause is true in an interpretation if it is true for all variable assignments

Example

- Interpretation I
 - $\pi(male) = \{<\text{William}>,<\text{George}>\}$
 - $\pi(female) = \{<\text{Sally}>\}$
 - $\pi(person) = \{<\text{William}>,<\text{George}>,<\text{Sally}>\}$
- Are the following true?
 - $\text{person}(X) \leftarrow \text{male}(X)$
 - $\text{person}(X) \leftarrow \text{female}(X)$
 - $\text{male}(X) \land \text{female}(X)$
 - $\text{male}(X) \lor \text{female}(X)$
 - $\text{person}(X) \leftarrow \text{female}(X) \land \text{male}(\text{William})$
Overview

- Representation and Reasoning System
- Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics
 ⇒ Models
- Logical Consequence
- Two Views of Semantics

Sets of Clauses

- A set of clauses is true in an interpretation if each clause is true in the interpretation
 - Note that we universally quantify for the variables over each clause
 - In other words, if two clauses use the same variables, it is the same as if they used different variables

 \[
 \begin{align*}
 \text{person}(X) & \leftarrow \text{male}(X) \\
 \text{parent}(X,Y) & \leftarrow \text{father}(X,Y) \\
 \text{grandfather}(Z,X) & \leftarrow \text{father}(Z,Y) \land \text{parent}(Y,X)
 \end{align*}
 \]
Models

- A model of a set of clauses is an interpretation in which all the clauses are true.
 - Start with KB and look at what interpretations can be true.

Example KB:

\[p \leftarrow q. \]
\[q. \]

<table>
<thead>
<tr>
<th>$\pi(p)$</th>
<th>$\pi(q)$</th>
<th>$\pi(p \leftarrow q)$</th>
<th>Model of KB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>TRUE</td>
<td>TRUE</td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Example with constants

- Example: (focus on all interpretations, not just intended one)
 + Language with constants a and b and 1-ary predicate $\text{girl}(_)$.
 + Domain with $D = \{x, y, z\}$.
 + 9 ϕ’s and 8 π’s, so 72 interpretations.

- How many models of $KB = \{ \text{girl}(a), \text{girl}(b) \}$?
 (Checking each would take too long, so let's break down into subcases)

 - Case 1: $\phi_i(a) = \phi_i(b)$
 + How many of the 9 ϕ_i’s have $\phi_i(a) = \phi_i(b)$?
 + When $\phi_i(a) = \phi_i(b) = x$, which π_i’s make KB true?
 + So how many models with $\phi_i(a) = \phi_i(b)$?

 - Case 2: $\phi_i(a) \neq \phi_i(b)$
 + How many of the 9 ϕ’s?
 + When $\phi_i(a) = x$ and $\phi_i(b) = y$, which π’s make the KB true?
 + So how many models with $\phi_i(a) \neq \phi_i(b)$?
Logical Consequence

• If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
 - This tells us that our KB, by its definition, always forces g to be true
 - Other terms that mean same thing:
 - g logically follows from KB
 - KB entails g
• That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.
• $KB \not\models g$ if g is not a logical consequence of KB
Example Revisited

- **KB:**

 \[p \leftarrow q. \]

 \[q. \]

<table>
<thead>
<tr>
<th>[\pi(p)]</th>
<th>[\pi(q)]</th>
<th>[\pi(p \leftarrow q)]</th>
<th>model of KB?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Does **KB** \(\models p \)?

Overview

- Representation and Reasoning System
- Syntax of Datalog
- Semantics of Datalog
- Adding Variables to Semantics
- Models
- Logical Consequence
 \(\Rightarrow \) Two Views of Semantics
User’s View of Semantics

• Choose a task domain: intended interpretation
• Associate constants with individuals you want to name
• For each relation you want to represent, associate a predicate symbol in the language
• Tell the system clauses that are true in the intended interpretation: axiomatizing the domain
 - hopefully you tell it enough knowledge about the domain so that it can conclude everything you want it to
• Ask questions about your domain

Computer’s view of semantics

• Computer given the knowledge base
 - Computer doesn’t have access to the intended interpretation
• User asks it a question g
 - Computer should answer true if $KB \models g$
 + g is true in all models, so is true in user’s intended interpretation
 - Otherwise, computer should answer “I don’t know”
 + There is at least one model in which g is false
 + Note g might have been true in user’s intended interpretation. In this case, user didn’t have enough clauses in the KB to sufficiently narrow down the models
• Aside: computer could answer the question by enumerating over all of the possible interpretations (model checking)
 - But number of interpretations grows quickly!!
Summary of Semantics

• User has intended interpretation
 But just tells the computer a small set of facts that hopefully adequately captures the user’s intended interpretation

• Computer answers true if all interpretations that make KB true (models) make the question true
 - Now we have specs for the computer’s reasoning algorithm
 - It should answer yes if $KB \models q$, other answer don’t know