Question 1 (1 marks)
Definition of a DFA: A DFA is a 5 tuple \(\{Q, \Sigma, \delta, q_0, F\} \)
where \(Q \) is a set of states,
\(q_0 \) is the start state and \(q_0 \in Q \)
\(F \) is the set of accept states and \(F \subseteq Q \)
and \(\delta : Q \times \Sigma \rightarrow Q \)

Give the definition of an NFA. You only have to state what is different. State your answer using mathematical notation (or in words).

Question 2 (1 marks)
Here is the definition of computation for a DFA.
Let \(M = \{Q, \Sigma, \delta, q_0, F\} \) be a DFA and let \(w \) be a string where \(w = w_1...w_n \) and \(w_i \in \Sigma \).
\(M \) accepts \(w \) if
(1) there is a sequence of states \(r_0...r_n \)
(2) \(r_0 = q_0 \)
(3) \(r_n \in F \)
(4) \(r_i = \delta(r_{i-1}, w_i) \)

Give the definition for computation for a NFA. You only have to state what is different. State your answer using mathematical notation (or in words).
Question 3 (1 marks)
Give the definition of a regular language. Start with “A language L is regular if ...”

Question 4 (1 marks)
Draw a DFA for $\{w\mid$ the second last character of w is a 1$\}$. Explain what each state means.

Question 5 (1 marks)
Draw a NFA for $\{w\mid$ the third last character of w is a 1$\}$. Make sure your NFA is using non-determinism effectively. Explain how the non-determinism is being used.
Question 6 (1 marks)

Give a regular expression for the language \(\{ w \mid \text{the third last character of } w \text{ is a } 1 \} \). (All strings in this language will be at least 3 characters long.)

Question 7 (2 marks)

Let \(L \) be a regular language, and \(N \) an NFA that recognizes it. Construct an \(M \) NFA that recognizes \(L^* \). Explain the construction in both words and mathematical notation.

What does your construction show about regular languages?
Question 8 (3 marks)
Convert the following from a NFA to a regular expression using the method given in class. Show all steps.

\[
\begin{array}{c}
\text{start} \\
\rightarrow \\
a \\
\rightarrow 0 \\
\rightarrow 0 \\
\rightarrow b \\
\end{array}
\]
Context Free Languages

Question 9 (3 marks)

Let $L = \{w#y \mid \text{the } i\text{th character in } w \text{ is not the same as the } i\text{th character in } y \text{ for some } i \text{ and } |w| \geq i \text{ and } |y| \geq i\}$. $\Sigma = \{0, 1\}$. Give a PDA for this language. You can describe the PDA in words.
Question 10 (2 marks)

$L = \{ w#y \text{ such that } |w| \neq |y| \}$. $\Sigma = \{0,1\}$. Give a grammar that recognizes this language.

Question 11 (2 marks)

Let $L = \{ w \mid vw \in A \}$ where A is context free and $\Sigma = \{0,1\}$. (L is the suffix of A). Prove that L is also context free.
Question 12 (2 marks)
Let $L = \{ w | w \in \{a, b, c\}^* \text{ and number of a’s, b’s and c’s is the same} \}$. Prove that L is not context free.

Turing Machines

Question 13 (1 marks)
Define what configuration uaq,bv means, in terms of what state the TM is in, what is on the tape, and where the tape head is.
Question 14 (1 marks)
If a TM is in configuration 0011q2001, what will be the configuration if it makes the transition $\delta(q_2, 0) \rightarrow (q_3, x, L)$.

Question 15 (1 marks)
Define what it means for a TM machine T to accept a string w, in terms of configurations. Your definition should apply to both deterministic and non-deterministic machines.

Question 16 (1 marks)
What is the difference between a Turing recognizable language and a Turing decidable language?