Overview

⇒ Problems in NP
• Complexity Classes
• NP-Completeness
• Cook-Levin
• Additional NP-Complete Problems

k-Clique

• A **clique** in an undirected graph is a subgraph, where every two nodes are connected by an edge.
• A **k-clique** is a clique that contains k nodes
• Clique problem is to determine whether a graph contains a clique of a specified size

$CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

Theorem 7.24: $CLIQUE$ is in NP.
• Proof Idea: The clique is the certificate
Alternate Proof

• An NTM $N = \langle G, k \rangle$:
 1. Nondeterministically guess a subset c of k nodes of G
 2. Test whether G contains all edges connecting nodes in c
 3. If both pass, accept; otherwise, reject

Remember:
- If we reject, it means that c is not a certificate
- Input $\langle G, k \rangle$ is in CLIQUE if there is some certificate c
- Input $\langle G, k \rangle$ is not in CLIQUE if there is no certificate

Proof

Let the certificate be the nodes in the clique c.

$V = \langle G, k \rangle$:
 1. Test whether c is a set of nodes in G
 2. Test whether G contains all edges connecting nodes in c
 3. If both pass, accept; otherwise, reject

The following is a verifier for CLIQUE:

$\gamma(V) = L$
Subset-Sum

Given a collection of numbers, and a target number, is there a subset that adds up to the target?

\[\text{SUBSET-SUM} = \{ \langle S, t \rangle | S = \{x_1, \ldots, x_k\} \text{ and for some } \{y_1, \ldots, y_l\} \subseteq S, \text{ we have } \sum y_i = t \} \]

- Example: \(\langle \{4, 11, 16, 21, 27\}, 25 \rangle \)
- Note that these can be multisets and so allow repetition

Theorem 7.25: \(\text{SUBSET-SUM} \) is in NP

- Proof Idea: the subset is the certificate
Proof

• The following is a verifier for SUBSET-SUM.
 $V = \text{"On input } \langle \langle S, t \rangle, c \rangle: \text{"}$
 1. Test whether c is a collection of numbers that sum to t
 2. Test whether S contains all numbers in c
 3. If both pass, accept; otherwise, reject"

• Alternate Proof: An NTM $N =$
 "On input $\langle S, t \rangle$:
 1. Nondeterministically select a subset c of S
 2. Test whether c sums to t
 3. If test passes, accept; otherwise, reject"

Overview

• Problems in NP
 ⇒ Complexity Classes
• NP-Completeness
• Cook-Levin
• Additional NP-Complete Problems
P versus NP

• P is class of languages where membership can be decided in polynomial time
• NP is the class of languages where membership can be decided in polynomial time on a nondeterministic TM
• But is P = NP?
 - Have not been able to find any languages in NP that are provable to not be in P!!
 - If equal, any problem solvable in nondeterministic polynomial time are solving in polynomial time!!
 - Most researchers believe they are not equal

Complements

• What about CLIQUE and SUBSET-SUM?
 - Not obvious whether these are in NP
 - Verifying that something is not present seems to be more difficult then verifying it is present

Definition: coNP are languages whose complement is in NP.

• Unknown if coNP different from NP (i.e., closed under complementation)
 - \(L \in NP \) if there is a NTN \(N \) that is a decider s.t. \(w \in L \) iff \(N \) has at least one computation path that will accept
 - \(L \in coNP \) if there is a NTN \(C \) that is a decider s.t. \(w \in L \) iff all computation paths reject
 - Switching accept and reject of \(N \) does not result in \(C \) (HW question)
Final Point on coNP

- Both NP and coNP are in EXPTIME
 - Not equivalent, but very similar
 - NP is a bit nicer as NP languages have a verifier
 + You can give an existence proof for it
 + No existence proof possible for coNP

EXPTIME

- NP problems can be decided in deterministic exponential time
 - Proved this by complexity of simulating the nondeterminism

NP ⊆ EXPTIME = ∪_k TIME(2^{n^k})

- We can also prove coNP ⊆ EXPTIME
 - If \(A \in \text{coNP} \), \(\overline{A} \in \text{NP} \) and is decided by NTM \(N \)
 - There is a deterministic TM \(M \) that decides \(\overline{A} \) in exponential time
 - Construct \(M' \) by switching \(M \)'s accept and reject state
 - \(M' \) runs in exponential time and decides \(A \)
 - Note that switching accept and reject just works for a DTM to have it accept the complement of the language
 - This doesn’t work for a NTM. If it did then coNP = NP
 - So, P is closed under complementation. \(\text{NP} \) is probably not
Motivation

- We don’t know if P=NP
 - So, we do not know if there is a problem in NP that is not in P
 - How can we shed light on this?
 - Are there problems that capture how difficult NP is
 + If such a problem is solvable in P then P=NP
 - Such problems will be called **NP-complete**

- On theoretical side
 - To show P is not equal to NP, show an NP-complete problem is not in P
 - To show P is equal to NP, show an NP-complete problem is in P

- On Practical side
 - If you can show your problem is NP-complete, don’t bother looking for a polynomial algorithm
An NP-complete problem

• satisfiability problem for boolean formula
 - a bunch of boolean variables, which can be ‘true’ 1, or ‘false’ 0
 - boolean operations: ‘and’ ∧, ‘or’ ∨, ‘not’ ¬ (¬x also written as ¯x)
 + defined by truth tables
 - boolean formula is an expression involving boolean variables and operations. e.g. φ = (x∧y) ∨ (x∧¯x)
 - a boolean formula is satisfiable if some assignment of 1 and 0 to variables makes the formula true (1)
 + what assignment makes above formula true?
 $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$

Cook-Levin Theorem: $SAT \in P$ iff $P = NP$

• So, SAT is an NP-complete problem!
 - Will take a bit of effort to prove this!

Definitions

• In chapter 5, we defined mapping reducibility
 - Now define a version that takes time into account

Definition 7.28: A function $f : \Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function if some polynomial time Turing machine M, on every input w halts with just $f(w)$ on its tape.

Definition 7.29: Language A is polynomial time mapping reducible, or simply polynomial time reducible, to language B, written $A \leq_P B$, if there is a polynomial time computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B.$$

Function f is called a polynomial time reduction of A to B.
Polyomial Time Reducibility

- As with ordinary mapping reduction, polynomial time reduction of A to be B provides a way to convert membership testing in A to membership testing in B
 - To test whether $w \in A$, we use reduction f to map w to $f(w)$ and test whether $f(w) \in B$
 - But, where conversion is done efficiently

Theorem 7.31: If $A \leq_P B$ and $B \in P$, then $A \in P$

- Compare with Chapter 5:
 Theorem 5.22: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof

- If $A \leq_P B$ and $B \in P$, then $A \in P$
 - Let M be a polynomial time algorithm deciding B and f be the polynomial time reduction from A to B
 - We describe the polynomial time algorithm N for deciding A
 $N =$ “On input w:
 1. Compute $f(w)$
 2. Run M on input $f(w)$ and output whatever M outputs”
 - Does N decide A?
 + N accepts w whenever M accepts $f(w)$ (line 2)
 + M accepts $f(w)$ whenever $f(w) \in B$ (since M is a decider of B)
 + $f(w) \in B$ whenever $w \in A$ (since f is a reduction)
 + So N accepts w whenever $w \in A$
 - N runs in polynomial time as f does and so does M
3SAT

- Let’s practice using polynomial time reducibility
 - But on a simpler problem than SAT

- Definitions
 - A literal is a boolean variable or a negated boolean variable: \(x \) or \(\overline{x} \)
 - A clause is several literals connected with \(\lor \)'s
 - A boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses connected with \(\land \)
 + Aside: Any boolean expression can be written in conjunctive normal form
 - It is 3cnf-formula if all the clauses have three literals
 \((x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_6 \lor x_4) \land (x_4 \lor x_5 \lor x_6)\)

\[3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-formula} \}\]

3SAT and CLIQUE

Theorem 7.32: 3SAT is polynomial time reducible to CLIQUE

- Proof idea:
 - Convert formulas to graphs
 - Structures within the graph are designed to mimic the behavior of each variable and of each clause
How to convert formulas to graphs

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

• What is the essence of 3SAT?
 - Each of the \(k\) clauses must have at least one literal that is true
 - Truth value of variables must be consistent

• How do we map this to a graph?
 - One node for each literal in each clause (3\(k\) nodes)
 - Clique will indicate which literals are true
 - No edges between the literals that are negations of each other
 + That way both nodes cannot be included in a clique
 - For each node, add an edge to every other node not in its clause
 + Except between literals that are negations of each other
 - Look for a clique of size \(k\)

Is it a mapping reduction?

• If a formula has a satisfying assignment
 - Pick one true literal from each clause to be in subset (will be at least one)
 - There will be an edge between each node because
 + None of the picked literals will be negations of each other
 + There are not two literals from same clause
 - So there is a clique of size \(k\)

• If there is a clique of size \(k\)
 - Make all of the literals in the clique to be true
 + Positive literal makes var true, negative literal makes var false
 - Since no edges between literals in same clause, clique must contain exactly one literal from each clause; which makes clause true
 - Since no edges between negations of literals, clique does not contain literals that are negations of each other; so truth assignment is consistent
 - Any variables not specified, truth assignment does not matter
Polynomial Time Reduction?

- Yes
 - Can construct the graph from the formula very easily
- So if CLIQUE is solvable in polynomial time, so is 3SAT
 - At first glance, seems quite remarkable as they are very different problems

Definition

Definition 7.34: A language B is **NP-complete** if it satisfies two conditions:
1. B is in NP
2. every A in NP is polynomial time reducible to B

Theorem 7.35: If B is NP-complete and $B \in P$, then $P = NP$.
Theorem 7.36: If B is NP-complete and $B \leq_p C$ for C in NP, then C is NP-complete

Proof

- Let A be any language in NP
- Since B is NP-complete, $A \leq_p B$
 - So can convert a problem in A to a problem in B in polynomial time
- Since $B \in P$, B can be decided in polynomial time
- So, make a machine that first converts problem in A to one in B, and then decides the problem in B
- Both steps can be done in polynomial time
- So $A \in P$. So every language in NP is in P.
- So NP \subseteq P
- We already know that P \subseteq NP. So, P = NP

Another Theorem

Theorem 7.36: If B is NP-complete and $B \leq_p C$ for C in NP, then C is NP-complete

- Let $A \in$ NP
- Since B is NP-complete
 + There is a polynomial time mapping reduction f_{AB} from A to B
- Since $B \leq_p C$
 + There is a polynomial time mapping reduction f_{BC} from B to C
- Let $f(w)$ be $f_{BC}(f_{AB}(w))$
 + This will be a mapping reduction from A to C
 + Running two polynomial time algorithms in a row is still polynomial
 + So f is a polynomial time reduction from A to C
- Since C is in NP, and for every $A \in$ NP, there is polynomial time reduction to C, C is NP-complete
The Quest for an NP-Complete Problem

• We now know that:
 - there are problems in NP that capture how difficult NP is
 + If $P \neq NP$, NP-complete problems will not be in P
 - once we have one NP-complete problem, we can use polynomial reductions to show other problems are NP-complete
 + If 3SAT is NP-complete, so is CLIQUE

• But how do we prove the first one?
 - Cook-Levin Theorem: SAT $\in P$ iff $P = NP$
 - From previous theorems, same as: SAT is NP-complete

• Proof of Condition 1:
 - SAT is polynomial-time verifiable
 + Certificate is truth assignment of variables
 + Can be verified in polynomial time
Second Condition

- Let A be a language in NP
 - Need to show that $A \leq_p \text{SAT}$
 - Need to show that some polynomial time reduction exists
 - All that we know about A is that it can be decided by an NTM, say N
 - But, we do know that N will have an accepting computation
 - For input w of length n, will be of length at most n^k for some k
 - All that we need to show is that f exists, don’t have to give actual f
 - So, we don’t need to know what value k is
 - Think of all the configurations as rows in a table
 - n^k configurations (rows) each n^k long (columns)
 - Each row should follow previous according to N’s transition function
 - Accepting tableau if one of the rows is an accepting configuration

Reduction from w to ϕ

- Let $C = Q \cup \Gamma \cup \{\#\}$
 - states, tape alphabet, begin/end symbol to mark computation
- Each of the $(n^k)^2$ cells in table are called a cell
 - Each cell $(i, j) \in C$
 - Variable for each possible value in each cell: $x_{i,j,s}$ is true if cell $(j, j) = s$
- ϕ composed of 4 parts
 - For each cell, make sure exactly one value is true
 - At least one value is true in cell: one clause with $|C|$ literals
 - $x_{i,j,s_1} \lor x_{i,j,s_2} \lor \ldots \lor x_{i,j,s_m}$
 - At most one value is true in cell: $|C|^2$ clauses for each pair of values s, t
 - $x_{i,j,s} \land \neg x_{i,j,t}$
 - Make sure first row is the start configuration: start state and input w
 - $x_{1,1,#} \land x_{1,2,#} \land w_1, w_2 \land \ldots \land w_1, n+2, w_n \land w_1, n+3, \# \land \ldots \land w_1, n^k, \#$
Continued

- There is an accepting configuration
 + One of the cells is the accept state
 \[x_{1,1}q_{accept} \lor x_{1,2}q_{accept} \lor \ldots \lor x_{n^2,n^2}q_{accept} \]
 - Make sure each configuration row legally follows previous row
 + Create clauses to capture how each 3x2 set of cells can change
 + Where there is no change (for any \(a, b, c \in \Gamma \)):
 \[
 \begin{array}{ccc}
 a & b & c \\
 a & b & c \\
 \end{array}
 \]
 + Legal windows for \((q_2, a, L) \in \delta(q_1, b)\) (for any \(a, b, c, d \in \Gamma \)):
 \[
 \begin{array}{ccc}
 d & c & a \\
 d & c & a \\
 \end{array}
 \]
 + Similar to what we did with PCP

- Size of formula will be polynomial in size of input: \(O(n^{2k})\)
 - Has a very repetitive structure, so we can generate it in time \(O(n^{2k})\)

PCP versus SAT

- Used accepting computation histories of a TM on \(w\) in a reduction to prove
 - PCP is undecidable
 - SAT is NP-hard
 - Seems contradictory

- Showed acceptance of a TM on \(w\) can be encoded in PCP
 - Tiles encode legal moves
 - There is an accepting configuration of TM on \(w\) iff there is a solution to corresponding PCP problem
 - Since \(A_{TM}\) is not decidable, PCP is not decidable

- Here: Showed acceptance of a TM on \(w\) can be encoded in SAT
 - Does this mean that SAT is undecidable?
3SAT

Corollary 7.42: 3SAT is NP-Complete

Previous proof can be altered to produce a formula in 3SAT.

Overview

• Problems in NP
• Complexity Classes
• NP-Completeness
• Cook-Levin
 ⇒ Additional NP-Complete Problems
NP-Complete problems

- SAT is NP-complete
- $3SAT$ is NP-complete
- $CNF-SAT$ is NP-complete
- $CLIQUE$ is NP-complete
- $HAMPATH$ is NP-complete
- $SUBSET-SUM$ is NP-complete