Overview

⇒ Diagonalization
• Undecidability

Diagonalization Method

• To prove A_{TM} is undecidable, use diagonalization method
 - Technique developed by Georg Cantor in 1873 for measuring size of infinite sets
• To see if finite sets are the same size, we simply count them
• What about infinite sets?
 e.g. set of natural numbers $\mathcal{N} = \{1, 2, 3, \ldots\}$ and set of even numbers $\mathcal{E} = \{2, 4, 6, \ldots\}$
 - We can’t count them, as we will never stop
 - Idea: Set up a mapping from one set to the other
Correspondences

Definition: Assume we have sets A and B and a function f from A to B. We say that f is **one-to-one map** if it never maps two different elements to the same place—that is $f(a) \neq f(b)$ whenever $a \neq b$.

Definition: We say that f is **onto** if it hits every element of B—that is, if for every $b \in B$ there is an $a \in A$ such that $f(a) = b$.

Definition: We say that $f : A \to B$ is a **correspondence** if f is one-to-one and onto.

Definition: We say that A and B are the **same size** if there is a correspondence between A and B.

- We can set up a correspondence between \mathcal{N} and \mathcal{E}: $f(n) = 2n$.
 - So, same size!

Countable

Definition: A set A is **countable** if either it is finite or it has the same size as \mathcal{N}.

- Is the set of positive rational numbers countable?
 - $Q = \{ \frac{m}{n} \mid m, n \in \mathcal{N} \}$
 - Can we set up a correspondence between \mathcal{N} and Q
Set of Real Numbers is Uncountable

- Proof by contradiction
 - Assume that there is a correspondence from \mathcal{N} to \mathcal{R} called f

 $\begin{array}{|c|c|c|c|}
 \hline
 n & f(n) \\
 \hline
 1 & 3.14159... \\
 2 & 5.55555... \\
 3 & 0.14345... \\
 4 & 0.50000... \\
 5 & 0.25888... \\
 \vdots & \vdots \\
 \hline
 \end{array}$

 - Construct a number x by giving its decimal representation
 + Between 0 and 1, so all its significant digits follow the decimal point
 + Objective: Ensure that $x \neq f(n)$ for any n
 + Construct x so that n digit differs from the n digit of $f(n)$
 + Don’t use 0 or 9 to avoid problem that 0.1999... and 0.2000... are equal

More Definitions

Definition: An infinite set that does not have a correspondence with \mathcal{N} is called **uncountable**.

Definition: A real number is one that has a decimal representation.
Some languages are not Turing-recognizable

- Set of all strings Σ^* is countable:
 + Only finitely many strings of each length
 + Write down all strings of length 0, length 1, length 2, etc
- The set of all Turing machines is countable:
 + Each has an encoding as a string $\langle M \rangle$
 + Subset of a countable number is a countable number

How many possible languages are there?

- Let L be the set of languages over Σ ($L = P(\Sigma^*)$)
 - How many languages are in L? i.e. How many subsets are in $P(\Sigma^*)$
- If $|X| = n$, $P(X) = 2^n$
 - What if $|X|$ is infinite, but countable?
- Set of all infinite binary sequences B is uncountable
 + Can use the diagonalization method used to show R is uncountable
- Can construct a correspondence from B to L
 - $b \in B$ indicates which strings of Σ^* to include in a $A \in L$
- So, uncountable number of languages
Continued

• Set of Turing machines is countable, set of languages are not countable, so must be some languages that a Turing machine cannot recognize

• This is pretty powerful
 - There are some languages that we cannot build a Turing machine that will accept \(w \) iff \(w \in L \)
 - We haven’t said what any of those languages are, but we know they exist

• Another way to think about it (not in textbook)
 - There are some languages (set of strings) in which there is no relationship between them that can be captured in a finite way (by a TM)

Overview

• Diagonalization
 \[\Rightarrow \] Undecidability
Introduction

- Showed how to use diagonalization method with real numbers
- Showed there are some languages that are not Turing-recognizable
- Showed that Halting problem is Turing-recognizable
- Next we will show that the Halting problem is not decidable
 - using diagonalization
- Then we will give a language that is not Turing recognizable

Halting Problem is Undecidable

- Proof by contradiction
 - Assume A_{TM} is decidable
 - Must exist a TM H that is a decider for A_{TM}
 + H must accept if M accepts w
 + H must reject if M does not accept w (rejects or goes forever)
 + Because H decides whether M accepts
 - Construct a new TM D that takes a TM $\langle M \rangle$ as input

 $$D(\langle M \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\
 \text{reject} & \text{if } M \text{ accepts } \langle M \rangle
 \end{cases}$$

 + We can implement D using H as a subroutine
 $D = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:} \text{\"}
 1. \text{Run } H \text{ on input } \langle M, \langle M \rangle \rangle \text{\"}
 2. \text{If } H \text{ accepts, reject, and if } H \text{ rejects, accept"}
Continued

• When we run D on a TM \(\langle M \rangle\)

\[
D(\langle M \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\
 \text{reject} & \text{if } M \text{ accepts } \langle M \rangle
\end{cases}
\]

• Now let’s run D on itself!!!

\[
D(\langle D \rangle) = \begin{cases}
 \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\
 \text{reject} & \text{if } D \text{ accepts } \langle D \rangle
\end{cases}
\]

• No matter what \(D\) does, it is forced to the opposite, which is obviously a contradiction

• Thus neither TM \(D\) nor TM \(H\) can exist

Where is the Diagonalization?

• List all TMs as rows (countable number), all computations on TMs as inputs as columns

- Running \(M’\)’s

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Entry \(i, j\) is \(M_i\) on \(\langle M_j \rangle\)

- Running \(H\) that simulates \(M\)’s

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Entry \(i, j\) is \(H\) on \(\langle M_j, \langle M_j \rangle \rangle\)
Turing-Unrecognizable Language

Definition: A language is **co-Turing-recognizable** if it is the complement of a Turing-Recognizable language.

Theorem: A language is decidable iff it is Turing-recognizable and co-Turing recognizable.
Proof \Rightarrow:

- Let A be decidable
 - Hence there is a deterministic TM M_1 that decides A
 - Construct M_2 that accepts any string that M_1 does not accept by having it accept when M rejects, and vice-versa
 - So, M_2 recognizes \overline{A}
 - M_1 recognizes A and M_2 recognizes \overline{A}
 - So, A is Turing-recognizable and co-Turing-recognizable

- Hard to do this proof with a non-deterministic TM
 - Non-deterministic TMs can decide a language
 - But, they reject when all computation paths die
 - So, can’t easily ‘complementize’ a non-deterministic TM
 - Would need to first convert it to a deterministic TM

Proof \Leftarrow:

- Let A be Turing recognizable and co-Turing recognizable
 - Let M_1 recognize A and M_2 recognize \overline{A}
 - Construct a decider for A as follows:
 \overline{M} = “On input w
 1. Run both M_1 and M_2 on input w in parallel.
 2. If M_1 accepts, accept; if M_2 accepts, reject.”
 - As every string w is either in A or \overline{A}, one of M_1 or M_2 must accept w.
 So M is a decider
 - Since M accepts all strings in A and rejects all strings not in A, M is a decider for A
 - Thus A is decidable
A Turing-Unrecognizable Language

Corollary: \(\overline{A_{TM}} \) is not Turing-recognizable

- We know that \(A_{TM} \) is Turing-recognizable
- Assume \(\overline{A_{TM}} \) is Turing-recognizable
- Then \(A_{TM} \) is decidable
- Contradiction
- So, \(\overline{A_{TM}} \) is not Turing-recognizable
 - There is no Turing machine that can tell whether a certain TM will loop forever or reject on a certain input