Decidability

• With Turing machines, we have a precise model of what an algorithm is
• We can use it to determine what problems are solvable and what problems are not solvable
 - By problem, we mean determining if a string is in a certain language
 - By solvable, we mean whether a Turing machine can decide the language

• We will first prove that a number of problems are solvable
 - Could just build an algorithm, but will use a TM formalism instead
• Real power is in showing that a problem is not solvable
Acceptance Problem for DFAs

- Is there an algorithm that when given a DFA and a word w can decide if the DFA will accept w?
- Let’s phrase this as a language that we need to decide
 - Both the DFA and w are part of the ‘input’ that needs to be ‘decided’
 - $A_{DFA} = \{(B, w)|B$ is a DFA that accepts input string $w\}$
- Prove that A_{DFA} is a decidable language
- Intuitively, a DFA either accepts or rejects a string
 - Does so after $|w|$ transitions of the DFA
 - So this should be a decidable language
Proof Idea

- Proof Idea: build a TM M that uses the description of B and w on the input tape, and simulates DFA B on input w
 - At end of processing w, if B is in an accept state then accept, otherwise reject
 - Note that it is not sufficient to build a Turing machine that corresponds to a specific DFA. It needs to simulate any DFA
 - We could do this proof by showing the existence of an ‘algorithm’, but we want practice with Turing machines

Proof

- We can assume that B is written as a list of its five components Q, Σ, δ, q_0 and F.
- When M receives its input, M first determines whether it properly represents a DFA and a string w. If not, M rejects.
- M writes start state on end of the tape, and marks start of input
- M then simulates B
 - Find the applicable transition:
 + Match current position of input and current state
 - Update state and current position
- When M finishes processing the last symbol of w
 - M accepts the input if B is in an accepting state
 - M rejects the input if B is in a non-accepting state
Acceptance Problem for NFAs

• Is there an algorithm that when given an NFA and a word \(w \) can decide if the NFA will accept \(w \)
 - \(A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \} \)

• Proof: the following TM decides language \(A_{NFA} \)
 \(N = \) “On input \(\langle B, w \rangle \) where \(B \) is an NFA, and \(w \) is a string
 1. Convert NFA \(B \) to an equivalent DFA \(C \), using the procedure in Chapter 1.
 2. Run TM \(M \) from previous proof on input \(\langle C, w \rangle \).
 3. If \(M \) accepts, accept; otherwise, reject.”

• Running TM \(M \) in stage 2 means incorporating \(M \) into the design of \(N \) as a subprocedure

Acceptance Problem for Regular Expressions

• Is there an algorithm that when given a regular expression and a word \(w \) can decide if the regular expression will generate \(w \)
 - \(A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that accepts input string } w \} \)

• Proof: the following TM decides \(A_{REX} \)
 \(P = \) “On input \(\langle R, w \rangle \) where \(R \) is a regular expression, and \(w \) is a string
 1. Convert \(R \) to an equivalent NFA \(C \), using procedure in Chapter 1.
 2. Run TM \(N \) from previous proof on input \(\langle C, w \rangle \).
 3. If \(M \) accepts, accept; otherwise, reject.”

• Existence of the 3 proofs shouldn’t be too surprising, as we can convert between the 3 formalisms using an algorithm
Do two DFAs accept the same language?

- Is $EQ_{\text{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$ decidable?
- Proof Idea:
 - Construct DFA C that accepts xor of two DFAs
 - Similar to how we did union-intersection of two DFAs
 - Take cross product of states and simulate A and B
 - Only accept if just one of the two DFAs is in an accept state
- Test if C accepts the empty set

$T =$ “On input $\langle A, B \rangle$ where A and B are DFAs
 1. Construct DFA C as described above.
 2. Run TM T from previous proof on input $\langle C \rangle$
 3. If T accepts, accept; otherwise reject.”

Does a DFA accept no strings?

- Formulate as a language
 - $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- Is E_{DFA} decidable?
- Proof:
 - $T =$ “On input $\langle A \rangle$ where A is a DFA
 1. Mark the start state of A
 2. Repeat until no new states get marked:
 3. For each state that is not marked
 4. Mark it if has a transition into it from any state
 that is already marked
 5. If no accept state is marked, accept; otherwise reject.”
Acceptance Problem for CFGs

- $A_{\text{CFG}} = \{(G, w) \mid G \text{ is a CFG that generates string } w\}$
- One idea is to use G to go through all derivations to determine whether any is a derivation of w
 - But, G might have infinitely many derivations
 - If G does not generate w, this algorithm would never halt
 - This would just be a recognizer, not a decider
Does a CFG accept no strings?

- $E_{\text{CFG}} = \{G | G \text{ is a CFG and } L(G) = \emptyset \}$
- One idea is to use S, which can test whether a CFG generates some particular string w
 - Would need to check this with all possible w, but infinitely many
- If a CFG generates a string, we know there is a derivation.
 - e.g. $S \Rightarrow aB \Rightarrow abCEd \Rightarrow abced$
 - If we take the last derivation, we see that there is a variable that is capable of generating a string (e.g. E)
 - As we move backwards through the derivation, we get more and more variables that can generate a string (e.g. C, B, S)
 - Until we reach the start symbol

Proof

- If grammar is in Chomsky normal form, any derivation of w has $2n-1$ steps, where $n = |w|$
 - So, just need to check derivations up to $2n-1$ steps
 - Only finitely many such derivations exist

$S =$ “On input $\langle G, w \rangle$ where G is a CFG an w is a string:
 1. Convert G to Chomsky normal form
 2. List all derivations with $2n-1$ steps, where $n = |w|$, except if $n = 0$, then instead list all derivations with 1 step (this is because grammar generates ϵ using one rule $S \rightarrow \epsilon$)
 3. If any of these derivations generate w, accept; if not, reject.”
Every Context-Free Language is Decidable

- Given a context-free language, can we build a TM machine that will accept it?
 - This is different from the acceptance problem, as here we just have to prove that for a given CFL we can build a TM
 - We can build a different TM for every different language

- Proof: Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G. It works as follows:

 $M_G =$ “On input $\langle w \rangle$
 1. Run TM S on input $\langle G, w \rangle$
 2. If this machine accepts, accept; otherwise reject.”
Introduction

- We have shown a number of problems to be decidable (solvable by an algorithm or Turing machine)
 - But, part of the reason for introducing this machinery was to show that there are problems that are not decidable
- What kind of problems are not decidable?
 - Are there any useful ones?
The Halting Problem

\[A_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \]

- Given a Turing machine \(M \) and an input \(w \), can we determine whether \(M \) will accept \(w \)?
- This is the acceptance problem for TMs
 - Previously showed acceptance problem for DFA and CFG are decidable
- We will eventually show that \(A_{\text{TM}} \) is undecidable

\[A_{\text{TM}} \text{ is Turing-Recognizable} \]

- Proof:
 \(U = \) “On input \(\langle M, w \rangle \) where \(M \) is a TM and \(w \) is a string
 1. Simulate \(M \) on input \(w \)
 2. If \(M \) ever enters its accept state, accept; if \(M \) ever enters its reject state, reject.”
- Note that \(U \) loops forever on \(w \) if \(M \) loops forever on \(w \),
 - So this construction just shows \(A_{\text{TM}} \) is Turing recognizable, and not necessarily decidable
 - If \(U \) had a way to tell if \(M \) was looping forever, it could reject, which is why \(A_{\text{TM}} \) is called the halting problem
Universal Turing Machine

- U is interesting in its own right
 - It is an example of a universal Turing machine
 - Capable of simulating any other Turing machine from a description of that machine