Decidability

• With Turing machines, we have a precise model of what an algorithm is
• We can use it to determine what problems are solvable and what problems are not solvable
 - By problem, we mean determining if a string is in a certain language
 - By solvable, we mean whether a Turing machine can decide the language

• We will first prove that a number of problems are solvable
 - Could just build an algorithm, but will use a TM formalism instead
• Real power is in showing that a problem is not solvable
Acceptance Problem for DFAs

• Is there an algorithm that when given a DFA and a word w can decide if the DFA will accept w?
• Let’s phrase this as a language that we need to decide:
 - Both the DFA and w are part of the ‘input’ that needs to be ‘decided’
 - $A_{\text{DFA}} = \{B, w \mid B$ is a DFA that accepts input string $w\}$
• Prove that A_{DFA} is a decidable language
• Intuitively, a DFA either accepts or rejects a string
 - Does so after $|w|$ transitions of the DFA
 - So this should be a decidable language

Overview

• Introduction: Decidability
 ⇒ Decidable Problems of Regular Languages
• Decidable Problems of Context-Free Languages
• Preliminaries to Halting Problem
Proof Idea

• Proof Idea: build a TM M that uses the description of B and w on the input tape, and simulates DFA B on input w
 - At end of processing w, if B is in an accept state then accept, otherwise reject
 - Note that it is not sufficient to build a Turing machine that corresponds to a specific DFA. It needs to simulate any DFA
 - We could do this proof by showing the existence of an 'algorithm', but we want practice with Turing machines

Proof

• We can assume that B is written as a list of its five components Q, Σ, δ, q_0 and F.
• When M receives its input, M first determines whether it properly represents a DFA and a string w. If not, M rejects.
• M writes start state on end of the tape, and marks start of input
• M then simulates B
 - Find the applicable transition:
 + Match current position of input and current state
 - Update state and current position
• When M finishes processing the last symbol of w
 - M accepts the input if B is in an accepting state
 - M rejects the input if B is in a non-accepting state
Acceptance Problem for NFAs

- Is there an algorithm that when given an NFA and a word w can decide if the NFA will accept w
 - $A_{\text{NFA}} = \{ \langle B, w \rangle | B \text{ is an NFA that accepts input string } w \}$
- Proof: the following TM decides language A_{NFA}
 \[\text{N = "On input } \langle B, w \rangle \text{ where } B \text{ is an NFA, and } w \text{ is a string}
 \begin{enumerate}
 \item Convert NFA B to an equivalent DFA C, using the procedure in Chapter 1.
 \item Run TM M from previous proof on input $\langle C, w \rangle$.
 \item If M accepts, accept; otherwise, reject."
\]
- Running TM M in stage 2 means incorporating M into the design of N as a subprocedure

Acceptance Problem for Regular Expressions

- Is there an algorithm that when given a regular expression and a word w can decide if the regular expression will generate w
 - $A_{\text{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that accepts input string } w \}$
- Proof: the following TM decides A_{REX}
 \[\text{P = "On input } \langle R, w \rangle \text{ where } R \text{ is a regular expression, and } w \text{ is a string}
 \begin{enumerate}
 \item Convert R to an equivalent NFA C, using procedure in Chapter 1.
 \item Run TM N from previous proof on input $\langle C, w \rangle$.
 \item If M accepts, accept; otherwise, reject."\]
- Existence of the 3 proofs shouldn’t be too surprising, as we can convert between the 3 formalisms using an algorithm
Does a DFA accept no strings?

- Formulate as a language
 - \(E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \)
- Is \(E_{\text{DFA}} \) decidable?
 - **Proof:**

 \[T = \text{"On input } \langle A \rangle \text{ where } A \text{ is a DFA} \]

 1. Mark the start state of \(A \)
 2. Repeat until no new states get marked:
 3. For each state that is not marked
 4. Mark it if has a transition into it from any state that is already marked
 5. If no accept state is marked, accept; otherwise reject.”

Do two DFAs accept the same language?

- Is \(EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)
 - **Proof Idea:** \(L(A) = L(B) \) iff \(L(A) \text{ xor } L(B) = \emptyset \)
 - Construct DFA \(C \) that accepts xor of two DFAs
 + Similar to how we did union/intersection of two DFAs
 + Take cross product of states and simulate \(A \) and \(B \)
 + Only accept if just one of the two DFAs is in an accept state
 - Test if \(C \) accepts the empty set

 \[T = \text{"On input } \langle A, B \rangle \text{ where } A \text{ and } B \text{ are a DFAs} \]

 1. Construct DFA \(C \) as described above.
 2. Run TM \(T \) from previous proof on input \(\langle C \rangle \)
 3. If \(T \) accepts, accept; otherwise reject.”
Overview

• Introduction: Decidability
• Decidable Problems of Regular Languages
 ⇒ Decidable Problems of Context-Free Languages
• Preliminaries to Halting Problem

Acceptance Problem for CFGs

• $A_{CFG} = \{(G, w)|G$ is a CFG that generates string $w\}$
• One idea is to use G to go through all derivations to determine whether any is a derivation of w
 - But, G might have infinitely many derivations
 - If G does not generate w, this algorithm would never halt
 - This would just be a recognizer, not a decider
Proof

- If grammar is in Chomsky normal form, any derivation of w has $2n-1$ steps, where $n = |w|
- So, just need to check derivations up to $2n-1$ steps
- Only finitely many such derivations exist

$S = \"On input $\langle G, w \rangle$ where G is a CFG an w is a string:\n1. Convert G to Chomsky normal form
2. List all derivations with $2n-1$ steps, where $n = |w|$, except if $n=0$, then instead list all derivations with 1 step (this is because grammar generates ϵ using one rule $S \rightarrow \epsilon$)
3. If any of these derivations generate w, accept; if not, reject.\"$

Does a CFG accept no strings?

- $E_{CFG} = \{ \langle G \rangle | G$ is a CFG and $L(G) = \emptyset \}$
- One idea is to use S, which can test whether a CFG generates some particular string w
 - Would need to check this with all possible w, but infinitely many
- If a CFG generates a string, we know there is a derivation.
 - e.g. $S \Rightarrow aB \Rightarrow abCEd \Rightarrow abcEd \Rightarrow abced$
 - If we take the last derivation, we see that there is a variable that is capable of generating a string (e.g. E)
 - As we move backwards through the derivation, we get more and more variables that can generate a string (e.g. C, B, S)
 - Until we reach the start symbol
Every Context-Free Language is Decidable

- Given a context-free language, can we build a TM machine that will accept it?
 - This is different from the acceptance problem, as here we just have to prove that for a given CFL we can build a TM
 - We can build a different TM for every different language

- Proof: Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G. It works as follows:

 $M_G = \text{"On input } \langle w \rangle \text{"}$
 1. Run TM S on input $\langle G, w \rangle$
 2. If this machine accepts, accept; otherwise, reject."
Introduction

• We have shown a number of problems to be decidable (solvable by an algorithm or Turing machine)
 - But, part of the reason for introducing this machinery was to show that there are problems that are not decidable
• What kind of problems are not decidable?
 - Are there any useful ones?
The Halting Problem

\[A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \]

- Given a Turing machine \(M \) and an input \(w \), can we determine whether \(M \) will accept \(w \)?
- This is the acceptance problem for TMs
 - Previously showed acceptance problem for DFA and CFG are decidable
- We will eventually show that \(A_{TM} \) is undecidable

\[A_{TM} \text{ is Turing-Recognizable} \]

- Proof:
 \[U = \text{"On input } \langle M, w \rangle \text{ where } M \text{ is a TM and } w \text{ is a string} \]
 1. Simulate \(M \) on input \(w \)
 2. If \(M \) ever enters its accept state, accept; if \(M \) ever enters its reject state, reject.”
- Note that \(U \) loops forever on \(w \) if \(M \) loops forever on \(w \),
 - So this construction just shows \(A_{TM} \) is Turing recognizable, and not necessarily decidable
 - If \(U \) had a way to tell if \(M \) was looping forever, it could reject, which is why \(A_{TM} \) is called the halting problem
Universal Turing Machine

- U is interesting in its own right
 - It is an example of a *universal Turing machine*
 - Capable of simulating any other Turing machine from a description of that machine