Overview

⇒ Nondeterminism
• Enumerators
• Algorithms
• Notation

Nondeterministic Turning Machine

• Defined in the expected way
 \[\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \]

• Definition of Computation:
 - The computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine.
 - If some branch of the computation leads to the accept state, the machine accepts its input.
 + Similar to how nondeterminism is defined in NFA and PDA.

• Let’s not talk about reject yet.
Equivalence

For nondeterministic TM \(N \), make equivalent deterministic TM \(D \)
- What do we mean by equivalent?
 + \(D \) accepts iff one of the computation branches of \(N \) accepts

• Construction
 - Simulate all possible branches of \(N \)'s nondeterminism
 + at any point, there will only be a finite number of computations
 - Must simulate them all in parallel (breadth-first) rather than depth-first
 - View nondeterminism as a bunch of choice points
 + For each transition, pick an alternative from \(\delta(q, a) \subseteq \mathcal{P}(Q \times \Gamma \times \{L, R\}) \)
 - Let \(b \) be the maximum number of choices
 + We can remember a sequence of choices using sequences from \(\{1, 2, ..., b\}^* \)
 + So a computational path is just a number in base \(b \)
 + Given a sequence, we can increment it base \(b \) to get the next set of choices!

Proof Continued

• Use 3 tapes:
 - input tape (never altered)
 - simulation tape: used to simulate a branch of computation
 - address tape (sequence of choice points we are current trying)

• While
 - Copy input tape to simulation tape
 - Run computation according to choices on address tape
 + Running computation from start to one step after what we previously did
 - If computation goes into an accept state, then \(\text{accept} \)
 - Otherwise, a choice point is invalid, or we finish the sequence
 + Increment the address tape
Corollary

Corollary 3.18: A language is Turing-recognizable iff some nondeterministic TM recognizes it.

Nondeterminism and Decidability

- Can we define a notion of halting for a nondeterministic TM?
 - Definition: Halts (accepts or rejects) on every computation branch
 + Or computation branch dies out as no transitions from it
 - If any computation branch is still going, we have not halted yet
 - A nondeterministic TM is called a **decider** if all branches halt on all inputs
 - Aside:
 - If we halted by accepting on any path, we accept. If we halted by rejecting on all paths, we reject
 - What if we accept on one branch, but another branch does not halt?
Equivalence for Deciders

• Does a nondeterministic TM that decides a language have an equivalent deterministic version?

• Previous construction for recognizing a language:

While
 Copy input tape to simulation tape
 Run computation according to choices on address tape
 If computation goes into an accept state, then accept
 Otherwise, a choice point is invalid, or we finish the sequence
 Increment the address tape

- Modify D so it
 + Checks if there are any computation paths still alive for this address length
 + Reject if there are not any

Corollary 3.19: A language is Turing-decidable iff a nondeterministic TM decides it.

Overview

• Nondeterminism
• \Rightarrow Enumerators
• Algorithms
• Notation
Enumerators

- Type of TM called an enumerator
 - Have a work tape and a printer
 + Starts with blank work tape
 - Can output strings to the printer
 + Can output an infinite list of strings
 - Strings it outputs is its language
 + Don’t worry about repetitions, or order
 - Enumerator TM enumerates the members of its language

- Languages that can be recognized by an Enumerator are called recursively enumerable languages
Equivalence

Theorem 3.21: A language is Turing-recognizable iff if some enumerator enumerates it

- **Proof ⇐ (enumerable language has a TM that recognizes it)**
 - We have an enumerator E that enumerates L
 - Construct turing machine M as follows
 $M = \{ \text{On input } w:\}$
 1. Run E. Every time that E outputs a string, compare it with w
 2. If w ever appears in the output of E, accept
 - Clearly M accepts the strings that E outputs and only those strings
 - So, turing machine M recognizes L
 - So, L is Turing-recognizable

- **Proof ⇒ (turing-recognizable language can be enumerated)**
 - We have a deterministic TM M that recognizes L
 - Say $s_1, s_2, s_3...$ is a list of all possible strings in Σ^*
 We can make a list of them as Σ^* is enumerable
 - Construct E as follows:
 $E = \{ \text{Ignore the input}$
 For $i = 1, 2, 3, ...$
 For $j = 1, 2, 3, ...i$
 Run M for i steps on input s_j
 If computation accepts, print out s_j
 - If M accepts a particular $w = s_j$, it will do it in say k steps
 So, E will print it out its outer iteration of $\max(k, j)$ (and many more times)
 - We’re basically running M in parallel on all inputs
Variants

• Pretty well any model with unrestricted access to unlimited memory has the same power

• Similar to how you can
 - Compile one language into another
 - Build an interpreter in one language for another one

• Any two computational models that satisfy certain reasonable requirements can simulate one another and hence are equivalent in power
 - One reasonable requirement is only perform a finite amount of work in a single step

• So, many variants, but still same class of languages
 - Turing-recognizable and Turing-decidable

Overview

• Nondeterminism
• Enumerators
 ⇒ Algorithms
• Notation
Motivation

• Integral roots of a polynomial
 - A polynomial: $6x^5yz^2 + 3xy^2 - x^3 - 10$
 - A root is an assignment of values to its variables so that the value is 0
 - Integral root is if all variables have an integer value

• Hilbert’s tenth problem was to devise an algorithm that tests whether a polynomial has an integral root
 - Actually, he said ‘a process according to which it can be determined by a finite number of operations’

• As it turns out there is no such algorithm
• But how do we go about proving this? that no algorithm exists
 - What is even an algorithm?

Church-Turing Thesis

• Intuitive notion of algorithm is the same as what can be done with a Turing machine
 - Or with lambda calculus

• Rephrase Hilbert’s tenth problem as a language
 $D = \{ p | p \text{ is a polynomial with an integral root} \}$

• Is D Turing-recognizable?
 - Let’s first consider polynomials with one variable
 + Try all possible integral values of x: 0, 1, -1, 2, -2, 3, -3, ...
 + If polynomial evaluates to 0, accept
 - For multiple variables
 + Can enumerate all possible integral values for the variables
 + If polynomial evaluates to 0, accept

• But is D decidable?
Overview

- Nondeterminism
- Enumerators
- Algorithms
 ⇒ Notation

Describing TM

- Formal description
 - States and transitions
- Implementation level
 - How the head moves, how it stores data on the tape
- High-level description
 - Describe the algorithm
 - Abstracts away from how machine works. Only use this when comfortable with how TM’s work
Input

- TM’s always take a string as input
- If you want to give it some object, must encode it as a string
 - For object O_1, we will refer to its string encoding as $\langle O_1 \rangle$
 - If we want to encode two objects O_1 and O_2 as input: $\langle O_1, O_2 \rangle$
 - Encode a graph G so a TM can use it as input?
 - Encode a DFA D so a TM can use it as input?
 - Encode a TM M so another TM can use it as input?