A Few More Details

- Other Rules:
 - Add $A_{pq} \rightarrow A_{pr}A_{rq}$ for every r
- Grammar needs base cases

• Start variable?
Example

• Base Cases
 • $A_{13} \rightarrow xA_{r,s}y$
 - via transition
 $A_{2,2} \rightarrow a$
 $A_{1,3} \rightarrow \epsilon$
 $A_{3,1} \rightarrow a$
 $A_{1,2} \rightarrow b$
 $A_{2,3} \rightarrow a$
 $A_{2,3} \rightarrow b$
 - no transition
 $A_{1,3} \rightarrow bA_{2,1}$
 $A_{1,3} \rightarrow A_{3,1}$
 $A_{1,3} \rightarrow bA_{2,2}a$
 $A_{1,3} \rightarrow A_{3,2}a$
 $A_{1,3} \rightarrow bA_{2,2}b$
 $A_{1,3} \rightarrow A_{3,2}b$

• Similarly for
 - $A_{1,1}$, $A_{1,2}$, $A_{2,1}$, $A_{2,2}$, ...

• Rules of form
 $A_{x,z} \rightarrow A_{x,y}A_{y,z}$
 - 27 rules of this form

PDA \Rightarrow Context-Free Grammar: Idea

• How do we expand our proof to account for a PDA P?
 - How does a PDA differ from an NFA?

• Change our definition of A_{pq}
 - Generate all possible strings that can take P from p to q
 + Starting with an empty stack and ending at an empty stack
 - So can be used for starting and ending with the same stack
PDA ⇒ Context-Free Grammar

• Proof Idea:
 - We have a PDA \(P \). We want to construct a CFG \(G \) that generates \(L(P) \)
 - For each pair of states \(p \) and \(q \) in \(P \), create \(A_{pq} \)
 + That will generate all possible strings in going from \(p \) to \(q \)
 + Starting with an empty stack and ending at an empty stack
 + So can be used for starting and ending with the same stack

Simplified PDAs

• To simplify the proof, let’s use simpler version of PDAs
 - Has a single accept state \(q_{\text{accept}} \)
 - Empties its stack before accepting
 - Each transition either pushes symbol onto stack or pops one off stack

• Can any PDA be converting into this simplified form?
 + If multiple accepts, add a new one, and transition to it with an epsilon read, no pop off of the stack
 + Add extra states so that we start by pushing \(\$ \) onto the stack, and after accept, pop everything off until we get to \(\$ \)
 + If transition pushes and pops, split into two transitions, with a new state inbetween
 + If transition doesn’t push or pop, split into two, in which first pushes and second pops some character
Designing the Grammar

- How do we define A_{pq}
 - so it generates all strings that can take P from p to q starting and ending with empty stack?
- P must first push, as stack is empty, and must end by popping
- Case 1: the initial push is popped at the very end
 - $A_{pq} \rightarrow a A_{rs} b$ where there is a transition
 + from p to r on input a and pushing c (with no pop)
 + from s to q on input b and popping c (with no push)
 i.e., for each $r, q \in Q$ and $a, b \in \Sigma$ and each $c \in \Gamma$, s.t. $(r, c) \in \delta(p, a, \epsilon)$ and $(q, c) \in \delta(s, b, \epsilon)$
- Case 2: the initial push is popped part-way through
 - $A_{pq} \rightarrow A_{pr} A_{rq}$ where r is the state where the stack becomes empty
- Start variable: $A_{q_0, q_{accept}}$
- How do we end? $A_{pp} \rightarrow \epsilon$

More Formally

Say that $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$

- Construct G as follows
 - The variables are $\{A_{pq} | p, q \in Q\}$
 - For each $p, q, r, s \in Q$ and $t \in \Gamma$, and $a, b \in \Sigma$
 + if $(r, t) \in \delta(p, a, \epsilon)$ and $(q, c) \in \delta(s, b, \epsilon)$, add rule $A_{pq} \rightarrow A_{pr} A_{rq}$
 - For each $p \in Q$, add the rule $A_{pp} \rightarrow \epsilon$
Proof

- Must show
 - if grammar G generates x, PDA P accepts x
 + Claim: if A_{pq} generates x, P can go from p to q starting/ending with empty stack on input x
 + Corollary: if A_{pq}, q_{accept} generates x, P accepts x
 - if PDA accepts x, grammar can generate x
 + Claim: If string x can bring P from p to q starting/ending with empty stack, A_{pq} generates x
 + Corollary: if x can bring P from start to accept state starting/ending with empty stack, A_{pq}, q_{accept} generates x

Claim: if Grammar generates x so does PDA

Claim 2.30: If A_{pq} generates string x, then x can bring P from p with empty stack to q with empty stack.

- We prove this claim by induction on the number of steps in the derivation of x from A_{pq}
- Basis: derivation has 1 step
 - Must use a rule whose right hand side contains no variables
 - Must use $A_{pp} \rightarrow \epsilon$
 - Only thing by grammar is ϵ
 - ϵ can take P from p to p with empty stack to empty stack
Induction: if Grammar generates x so does PDA

- Assume true for derivations of length at most k, where $k \geq 1$.
- Prove for deviation of length $k + 1$
 - Assume $A_{pq} \Rightarrow x$ with $k + 1$ steps
- Case 1: 1st step in der. is $A_{pq} \Rightarrow A_{rs}b$ where $a, b \in \Sigma$ and $r, s \in Q$
 - Say that $A_{rs} \Rightarrow y$ in the derivation, so $x = ayb$
 - A_{rs} generates y in k steps
 - So P can go from r to s starting/ending with empty stack and generate y
 - Since $A_{pq} \Rightarrow A_{rs}b$ is in grammar
 - $(r, t) \in \delta(p, a, \epsilon)$ for some $t \in \Gamma$ and $(q, \epsilon) \in \delta(s, b, t)$
 - So if P starts at p with empty stack
 - After reading a it can go to state r and push t on the stack
 - Then reading string y can bring it to s leaving t on the stack
 - Then after reading b it can go to q and pop t off the stack
 - So, P can go from p to q with empty stack, reading $ayb = x$

Case 2: First step in derivation is $A_{pq} \Rightarrow A_{pr}A_{rq}$

- Say $A_{pr} \Rightarrow y$ and $A_{rq} \Rightarrow z$
- Each does in less than $k + 1$ steps
 - So P can generate y going from p to r starting/ending with an empty stack
 - and can generate z going from r to q starting/ending with an empty stack
- So, P can generate $yz = x$ going from p to q starting/ending with empty stack
Continued: if PDA accepts x so does Grammar

- Case 1: stack is empty only at beginning and end
 - Symbol pushed at beginning must be same as symbol popped at end, say t
 - Let a be the input read in the first move, and b be the input read in the last
 - Let r be the state after the first read, and s be the state before the last read
 - So, $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$
 - So, rule $A_{pq} \rightarrow aA_{rs}b$ is in G
 - Let y be such that $x = ayb$
 - P can go from r to s by reading y without touching symbol t, and so P can go from r to s by reading y with an empty stack at begin and end
 - This has $k - 1$ steps in the computation
 - By induction, $A_{rs} \Rightarrow y$
 - Hence $A_{pq} \Rightarrow ayb = x$
Claim: if PDA accepts x so does Grammar

Claim 2.31: If string x can bring P from p to q starting/ending with empty stack, A_{pq} generates x

- Proof by induction on number of steps in computation of P
 - Basis: computation has 0 steps from p to q
 - In 0 steps, we can just stay at the same state q, and we will have read $x = \epsilon$ and not touched the stack
 - We have the rule $A_{pp} \rightarrow \epsilon$, which generates ϵ, as required
 - Induction:
 - Assume true for computations of length at most k, where $k \geq 0$
 - Suppose P has a computation wherein x brings p to q with empty stacks in $k + 1$ steps

Relationship to Regular Languages

- Let L be a regular language
- So, it there is an FA D such that $L(D)$
- Any FA is also a PDA, just with ϵ pops and pushes of stack
- So, a PDA can recognize L
- So, every regular language is context free
Continued: if PDA accepts x so does Grammar

- Case 2: stack is empty somewhere in middle of computation
 - Let r be the state where the stack is empty
 - Then the portions of the computation from p to r and from r to q each contain at most k steps
 - Say y is read from during first part (p to r) and z is read from r to q
 - Induction tells us that $A_{pr} \Rightarrow y$ and $A_{rq} \Rightarrow z$
 - We have rule $A_{pq} \rightarrow A_{pr}A_{rq}$ in G, so $A_{pq} \Rightarrow yz = x$