Definition of GNFA

A **generalized non-deterministic finite automaton** is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) where

1. \(Q\) is a finite set of states
2. \(\Sigma\) is a finite alphabet
3. \(\delta: (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathcal{R}\) is the transition function
4. \(q_{\text{start}} \in Q\) is the start state
5. \(q_{\text{accept}} \in Q\) is the accept state and \(q_{\text{start}} \neq q_{\text{accept}}\)

A GNFA accepts a string \(w \in \Sigma^*\) if \(w = w_1w_2...w_k\) where each \(w_i \in \Sigma^*\) and a sequence of states \(q_0, q_1, ..., q_k\) exists such that

1. \(q_0 = q_{\text{start}}\)
2. \(q_k = q_{\text{accept}}\)
3. for each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(q_{i-1}, q_i)\)
Proof: Construction

- Let M be the DFA for language A
- Convert M to a GNFA G by adding a new start state and a new accept state and additional transition arrows as necessary
- Use procedure $\text{CONVERT}(G)$, which takes a GNFA and returns an equivalent regular expression
 - CONVERT is recursive, but calls itself on fewer and fewer states, so no infinite loop

Convert: Construction

- Let k be the number of states of G
- If $k = 2$
 - G must consist of a start state, an accept state, and a single arrow connecting them with a regular expression R
 - Return R
- If $k > 2$
 - Select any state q_{rip} different from q_{start} and q_{accept}
 - Let G' be the GNFA $(Q', \Sigma, \delta', q_{\text{start}}, q_{\text{accept}})$
 - $Q' = Q - \{q_{\text{rip}}\}$
 - And for any $q_i \in Q' - \{q_{\text{accept}}\}$ and $q_j \in Q' - \{q_{\text{start}}\}$ let
 $\delta'(q_i, q_j) = (R_1)(R_3)^* (R_3) \cup (R_4)$, where $R_1 = \delta(q_i, q_{\text{rip}})$, $R_2 = \delta(q_{\text{rip}}, q_{\text{rip}})$,
 $R_3 = \delta(q_{\text{rip}}, q_i)$, and $R_4 = \delta(q_j, q_j)$
 - Compute $\text{CONVERT}(G')$ and return this value
Continued

- Do G and G' accept the same language?
 - Suppose G accepts an input w
 - There is an accepting sequence of states: $q_{\text{start}}, q_1, q_2, \ldots, q_{\text{accept}}$
 - If none of them is q_{rip}, then G' will accept w
 + Each of the new regular expression of G' contains the old regular expression as part of a union
 - If q_{rip} does appear, remove each run of consecutive q_{rip} states
 + This will be an accepting computation for G'
 + The states q_i and q_j that bracket each run have a new regular expression on the arrow between them that describes all strings taking q_i to q_j via q_{rip}. So G' accepts w
 - Conversely, say G' accepts an input w
 + As each arrow between any two states q_i and q_j in G' describes the collection of strings taking q_i to q_j in G, either directly or via q_{rip}, G must also accept w
Overview

- Regular Expressions (cont)
 ⇒ Non-regular languages
- Constructing Complex FA

Examples

- To understand the power of finite automata, you must understand their limitations
- What languages are not regular?
 - In the second class, we showed that $a^n b^n$ is not regular
- Consider
 - $\{ w | w \text{ has an equal number of 0s and 1s} \}$
 - $\{ w | w \text{ has an equal number of 01 and 10 as substrings} \}$
How can we prove a Language is not Regular

• Regular language is recognizable by a DFA
 - Say DFA has \(p \) states
 - DFA can only be in one of those \(p \) states
 - So, if input has more than \(p \) length, DFA must repeat a state
 - Everything that it saw between the two instances of that state
 + Could be taken out
 + Or repeated as many times as you want!
 + It can be \textit{pumped down} or \textit{pumped up}
 - If string that is pumped up or pumped down is not part of language,
 then language must not be regular

Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) can be divided into three parts, \(s = xyz \), satisfying the following conditions:

1. for each \(i \geq 0 \), \(xy^i z \in A \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)
Proof of Pumping Lemma

- Let M be a DFA that recognizes A and p be number of states
 - Use a DFA to prove this, much easier than using a NFA!
- Case 1: There is no string in A of length at least p
- Case 2: Let $s \in A$ and have length $n \geq p$
 - In accepting s, M will go through at least $n + 1$ states
 - $s = s_1 s_2 s_3 s_4 s_5 \ldots s_{n-1} s_n$
 - Pigeonhole principle: two of $r_1 \ldots r_{p+1}$ must be the same; say r_j and r_l
 - Let x be the string $s_1 \ldots s_{j-1}$. x takes M from r_0 to r_j
 - Let y be the string $s_{j+1} \ldots s_l$. y takes M from r_j to r_l
 - Let z be the string $s_{l+1} \ldots s_n$. z takes M from r_l to r_n
 - M must accept $xy^i z$ as it can go through the cycle $r_j \ldots r_l$ times

Example: $\{0^n1^n | n \geq 0\}$

- To use pumping lemma, assume that language is regular, and show there is a contradiction
- Assume it is regular
 - Let p be the pumping length for the language
 - Choose s to be 0^p1^p
 - By the pumping lemma, there must be a x, y, z, in which $|xy| \leq p$
 + $x = 0^j$ for some $j \geq 0$
 + $y = 0^k$ for some $k > 0$
 + $z = 0^l1^{k+l}$ where $l \geq 0$
 - $xy^i z$ must be in the language by the pumping lemma
 + But, for $i \neq 1$, the string will not have the same number of 0s and 1s
Example: \(\{w \mid w \text{ has an equal number of 0s and 1s}\} \)

- Assume it is regular, so must be a \(p \)
- But what string should we choose?
 - If we pick \((01)p \), we cannot find contradiction

- Assume it is regular, so must be a \(p \)
- But what string should we choose?
 - How about \(0^p1^p \)?
 - Won't work, as we can pump \(00 \)
 - How about \(0^p1^p1 \)?
 - This forces us to pump in the first set of 0's
Final Words on Pumping Lemma

- All regular languages obey the pumping lemma
- But not all non-regular languages do not obey pumping lemma
 - Some non-regular languages obey the pumping lemma
 - Cannot use pumping lemma to show a language is regular
 - See Question 1.54
- How can you prove a language is regular?

Overview

- Regular Expressions (cont)
- Non-regular languages
 ⇒ Constructing Complex FA
Constructing Complex FA

• To prove a language is regular, construct a DFA/NFA/RE
 - Might need to modify a DFA(s) for another language
 - Seen this for intersection, union, complement, star, concatenation

• Other Examples
 - Prefix: \(L = \{ w | wx \in A \} \) where \(A \) is regular
 - Suffix: \(L = \{ w | xw \in A \} \) where \(A \) is regular
 - Splicing: \(L = \{ xy | xw \in A \text{ and } uy \in B \} \) where \(A \) and \(B \) are both regular

Prefix DFA

\(L = \{ w | wx \in A \} \) where \(A \) is regular

• Option 1:
 - Since \(A \) is regular, there is a DFA \(M \) that recognizes it
 - Define garbage states:
 + states that do not have a path on any string to an accept state
 + don’t have to worry about states not reachable from start:
 can never get to them anyways
 - To construct a DFA for \(L \), use \(M \)
 + but change all of its non-garbage states to accept states
Epsilon Transitions

- \(A \) is a regular language, and \(M \) a DFA that recognizes it.
- Let’s build a FA \(N \) based on \(M \) but where we change all transitions so that rather than read characters, they read \(\epsilon \)
 - \(\delta_N(q, \epsilon) \in \{ q’ \mid \text{there is } a \in \Sigma \text{ s.t. } \delta_M(q, a) = q’ \} \)
 - Note that \(M \) is now a NFA, but that is fine.
- Claim: if \(A \) is empty, so is \(L(N) \) other \(L(N) = \{ \epsilon \} \)
 - If \(A \) accepts a string, must be a path from start to an accept state in \(M \)
 + That same path is in \(N \), so \(N \) must accept \(\epsilon \)
 - If \(A \) does not accept any string, there is no path from start to accept state in \(M \)
 + So there is no path in \(N \), so \(N \) does not accept anything.

Second Way to Show Prefix is Regular

\(L = \{ w \mid wx \in A \} \) where \(A \) is regular.

- Let \(M \) be a DFA for \(A \)
 - Make a copy of \(M \), call it \(N \)
 - Have \(\delta_N \)'s transitions be same as \(\delta_M \)'s, but read \(\epsilon \) instead of characters
 - Make a new machine \(P \) that joins \(M \) and \(N \) together
 + Add transitions from states of \(M \) to corresponding states of \(N \) on reading \(\epsilon \)
 + Start state is \(M \)'s start state, and accept states are \(N \)'s accept states.
More formally

- First N
 - Construct N similar to M, same states, start state, and accept states
 - $\delta_N(q, \varepsilon) = \{q' \mid \text{there is } a \in \Sigma \text{ s.t. } \delta_M(q, a) = q'\}$

- Now P
 - States of P are the union of states of M and N (not cross product)
 - Call M’s states $m_1...m_k$ and N’s states $n_1...n_k$
 - δ_P has all the transitions of M and N
 - δ_P also has the following transitions:
 $\delta_P(m_i, \varepsilon) \rightarrow n_i$ for all corresponding states m_i and n_i
 - Start state of P is M’s start state, and accept states are N’s accept states

Splicing

$L = \{xy \mid xw \in A \text{ and } uy \in B\}$ where A and B are both regular

- Let M be DFA s.t. $L(M) = A$ and N be a DFA s.t. $L(N) = B$
 - Join the two machines together
 - Add transitions from all states of M to all states of N with ε transition
 - Start state is M’s start state, and accept states are N’s accept states

- More formally
 - Create P as follows
 - P has union of states of M and N
 - Start state of P is M’s start state
 - Accept states of P are N’s accept states
 - Transitions of P are union of M and N’s transitions
 along with $\delta(q, \varepsilon) \rightarrow q'$ for all of $q \in M$’s states and $q' \in N$’s states
Common Prefix

\[L = \{ x | xw \in A \text{ and } xy \in B \} \] where \(A \) and \(B \) are both regular

- Let \(M \) be a DFA that recognizes \(A \) and \(N \) be a DFA that recognizes \(B \)
 - Build machine \(P \) in the same way we built a DFA that does intersection (cross product of states)
 - Turn all non-garbage states into accept states