Definition of GNFA

A generalized non-deterministic finite automaton is a 5-tuple

\((Q, \Sigma, \delta, q_0, F)\)

where

1. \(Q\) is a finite set of states
2. \(\Sigma\) is a finite alphabet
3. \(\delta: (Q - \{q_{\text{accept}}\}) \times (Q - \{q_{\text{start}}\}) \rightarrow \mathbb{R}\) is the transition function
4. \(q_{\text{start}} \in Q\) is the start state
5. \(q_{\text{accept}} \in Q\) is the accept state and \(q_{\text{start}} \neq q_{\text{accept}}\)

A GNFA accepts a string \(w \in \Sigma^*\) if \(w = w_1w_2...w_k\) where each \(w_i \in \Sigma^*\) and a sequence of states \(q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow ... \rightarrow q_k\) exists such that

1. \(q_0 = q_{\text{start}}\)
2. \(q_k = q_{\text{accept}}\)
3. for each \(i\), we have \(w_i \in L(R_i)\), where \(R_i = \delta(q_{i-1}, q_i)\) for each state \(q_i\) in the transition function.
• Let k be the number of states of G
• If $k = 2$,
 - G must consist of a start state, an accept state, and a single arrow connecting them with a regular expression R
 - Return R
• If $k > 2$,
 - Select any state q_{rip} different from q_{start} and q_{accept}
 - Let G' be the GNFA $(Q', \Sigma, \delta', q_{start}, q_{accept})$
 + $Q' = Q - \{q_{rip}\}$
 + and for any $q_i \in Q' - \{q_{accept}\}$ and $q_j \in Q' - \{q_{start}\}$ let
 \[
 \delta'(q_i, q_j) = (R_1)(R_2)^* (R_3) \cup (R_4),
 \]
 where $R_1 = \delta(q_i, q_{rip})$,
 $R_2 = \delta(q_{rip}, q_{rip})$,
 $R_3 = \delta(q_{rip}, q_j)$, and
 $R_4 = \delta(q_i, q_j)$
 - Compute $\text{CONVERT}(G')$ and return this value

Proof

• Let M be the DFA for language A
• Convert M to a GNFA G by adding a new start state and a single arrow
 - G must consist of a start state, an accept state, and a single arrow
• If $l \geq 2$,
 - Let l be the number of states of G
• Do G and G' accept the same language?

- Suppose G accepts an input w.
 - There is an accepting sequence of states: $q_{\text{start}}, q_1, q_2, q_3, \ldots, q_{\text{accept}}$.
 - If none of them is q_{rip}, then G' will accept w.

- Each of the new regular expressions is created from the old regular expressions.

- If none of them is q_{rip}, then G' will accept w.

- If q_{rip} does appear, remove each run of consecutive q_{rip} states.

- This will be an accepting computation for G'.

- Each of the new regular expressions contains the old regular expression as part of a union.

- Induction on number of states k in G.

Claim 1.65: For any G NFA, $\text{CONVERT}(G)$ is equivalent to G.

Proof continued
Examples

• To understand the power of finite automata, you must understand their limitations.
 - Consider:
 - \{w | w has an equal number of 0s and 1s and |w| is not regular\}
 - \{w | w has an equal number of 0s and 1s\}
 - \{w | w has an equal number of 0s and 1s\}
 - In the second class, we showed that \(a^n b^n\) is not regular.
 - What languages are not regular?
 - You must understand their limitations.
 - To understand the power of finite automata,

Overview

• Constructing Complex FA
 - Non-Regular Languages \(\Leftrightarrow\)
 - Regular Expressions (cont)
Pumping Lemma

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) can be divided into three parts, \(s = xyz \), satisfying the following conditions:

1. For each \(i \geq 0 \), \(xy^i z \in A \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) can be divided into three parts, \(s = xyz \), satisfying the following:

1. For each \(i \geq 0 \), \(xy^i z \in A \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

If a string has length more than \(p \), then it must repeat a state, and everything that we saw between those two instances of that state could be taken out. This means that DFA must repeat a state, and so DFA can only be in one of those states. The language is recognizable by a DFA.

How can we prove a language is not regular?
Example:

\[
\{0^n 1^n \mid n \geq 0\}
\]

To use pumping lemma, assume that language is regular, and show there is a contradiction.

- Assume it is regular
 - Let \(p \) be the pumping length for the language
 - Choose \(s \) to be \(0^p 1^p \)
 - By the pumping lemma, there must be a \(x, y, z \) in which \(|xy| \leq p\) such that \(y \neq \epsilon \) and for some \(j \geq 0 \),
 \[
 |x| + |y| = j
 \]
 \[
 |y| = k
 \]
 \[
 |z| \geq l
 \]
 where \(l \geq 0 \)
 - Choose \(s \) to be the pumping length for the language
 - Let \(d \) be the pumping length for the language
 - Assume \(s \) is regular

Show there is a contradiction.

Proof of Pumping Lemma

- Let \(M \) be a DFA that recognizes \(A \) and \(p \) be number of states
 - Use a DFA to prove this, much easier than using a NFA!
 - Case 1: There is no string in \(A \) of length at least \(d \)
 - Let \(N \) be a DFA that recognizes \(\{0^n 1^n \mid n \geq 0\} \)
 - By pigeonhole principle, two of the states must be the same, say \(q \).
 - In accepting \(s \), \(M \) will go through at least \(u + 1 \) states.
 - Case 2: Let \(s \) \(\in A \) and have length \(d \)
 - Let \(s = \epsilon \) and have length \(d \)

Proof of Pumping Lemma
Example: \(\{ \{ 0 \} \} \in \{ 0,1 \}^* \)

- This forces us to pump in the first set of 0's
- How about 010
- Won't work, as we can pump 00
- How about 010
- But what string should we choose?
- Assume it is regular, so must be a

\[\{ \{ 0 \} \} \in \{ 0,1 \}^* \]

Example: \(\{ \{ 0 \} \} \in \{ 0,1 \}^* \)

- If we pick \((01)^d\), we cannot find contradiction
- How about \((0)^d\)?
- But what string should we choose?
- Assume it is regular, so must be a

\[\{ \{ 0 \} \} \in \{ 0,1 \}^* \]
Overview

• Regular Expressions (cont)
• Non-regular languages
 ⇒ Constructing Complex FA

Final Words on Pumping Lemma

• How can you prove a language is regular?
 - See Question 1.54
 - Cannot use pumping lemma to show a language is regular
 - Some non-regular languages obey the pumping lemma
 - But not all non-regular languages obey the pumping lemma
 - All regular languages obey the pumping lemma

Final Words on Pumping Lemma
Epsilon Transitions

A is a regular language, and \(M \) a DFA that recognizes it.

Let \(L \) be \(\{ \epsilon \} \) if \(A \) is not empty, and \(\{ \} \) otherwise.

- We know that either way, \(L \) is a regular language.
- In either case, it is easy to build a DFA for \(L \).
- In fact, all finite languages are regular.

But let's say that we want to build a FA for \(L \) based on \(M \).

- Build a machine \(N \) for \(L \) based on \(M \), with same set of states.
- Change all transitions so that rather than read characters, they read \(\epsilon + \).

Note that \(M \) is now a NFA, but that is fine.

\[\delta_N(q, \epsilon) \in \{ q' | \exists a \in \Sigma \text{ s.t. } \delta_M(q, a) = q' \} \]

Prefix DFA

\[L = \{ w | wx \in A \} \]

where \(A \) is a regular language, \(\epsilon \) a regular language, and \(N \) a DFA that recognizes \(L \).

To construct a DFA for \(L \) use \(M \).

+ But change all of its non-garbage states to accept states.
+ Build a DFA \(N \) using \(M \).
+ Do not worry about states not reachable from start.
+ Since \(A \) is regular, there is a DFA \(N \) that recognizes it.

- Define garbage states:
 - garbage states:
 - Don't have to worry about states not reachable from start.
 - States that do not have a path to an accept state.
- Option 1:

 \[\{ x \in \Sigma^* | \exists n \in \mathbb{N} \text{ s.t. } x = y^n \} \]
Second Way to Show Prefix is Regular

Let A be a DFA for L where $A \in \{a, b \mid \epsilon \} = L$

Let M be a DFA for A

- Make a new machine P that joins M and N together
- Have δ_N's transitions be same as δ_M's, but read ϵ instead of characters
- Make a copy of N, call it N'

Correctness of Proof

- If A does not accept any string, there is no path from start to accept state in N, so N' does not accept anything
- So there is no path in N', so N does not accept anything
Splicing

More formally:

Let \(M \) be a DFA s.t. \(L(M) = A \) and let \(N \) be a DFA s.t. \(L(N) = B \).

Join the two machines together:
- Add transitions from all states of \(M \) to all states of \(N \) with \(\varepsilon \) transition.
- Start state of \(P \) is \(M \)'s start state, and \(N \)'s accept states are the accept states of \(P \).

More formally:

- States of \(P \) are the union of states of \(M \) and \(N \).
- Start state of \(P \) is \(M \)'s start state, and accept states are \(N \)'s accept states.
- Transitions of \(P \) are the union of \(M \)'s transitions and \(N \)'s transitions.
- Accept states of \(P \) are \(N \)'s accept states.
- Transition \(\delta_P(q, \varepsilon) \rightarrow q' \) for all \(q \) in \(M \)'s states and \(q' \) in \(N \)'s states.

Now consider \(N \) similar to \(N \), same states, same start state, same accept states, \(\{ b \in \Sigma \, | \, b \notin (a \cdot b)^* \} = \emptyset \).

First, \(N \):

- \(\delta_P \) has all the following transitions:
 - \(\delta_P \) has all the transitions from all states of \(N \) to all states of \(N \) with \(\varepsilon \) transition.
 - \(\delta_P \) has all the transitions from all states of \(N \) to all states of \(N \) (not cross product).

\[L(M) \cup L(N) \]
Common Prefix

Let A be a DFA that recognizes A and N be a DFA that recognizes B.

Let $L = \{x \in A \land x \in B\}$.

Build machine P in the same way we built a DFA that does intersection (cross product of states).

Turn all non-accepting states into accepting states.
Introduction

- Many languages can be described by FA and regular expressions
- Context-Free Grammars (CFGs) are more powerful
 - Can describe languages that have a recursive structure
 - Often used for human languages

- But some cannot

If you simplify this down to a FA, cannot capture what modifies what

\[\text{NP} \rightarrow \text{N PP} \]
\[\text{PP} \rightarrow \text{Prep NP} \]
\[\text{NP} \rightarrow \text{N pp} \]

- Ambiguity
- Designing CFGs
- Context-Free Grammars

Overview
Context-Free Languages

- Any language that can be generated from a context-free grammar is a context-free language.
- Why is it called context-free grammar?

What is language of G_1?

- Can use $|$ to separate right-hand sides
- $L(G_1)$ is the language of G_1

Example G_1

$A \rightarrow 0A1$
$A \rightarrow B$
$B \rightarrow #$

All strings generated from grammar constitute the language of

Context-Free Languages

- Substitution rules (or production rules)
- Symbol (variable) arrow string (variables and terminals)
- Variables are usually upper case; terminals lower case
- Symbols (variables and terminals) are usually upper case (variables) or lower case (terminals)

• Can be represented as a parse tree
- Sequence of substitutions to obtain a string is called a derivation
- Replace a variable by right-hand side of one of its rules
- Repeated until no variables
- Write down the start symbol

Generating a string (computation)

- Symbol (variable) usually on left-hand side of first rule
- Variables are usually upper case; terminals lower case
- Symbols (variables) arrow string (variables and terminals)

Example G_1

$# \leftarrow B$
$A \leftarrow B$
$A \leftarrow V01$
Definition: A context-free grammar is a 4-tuple \((V, \Sigma, R, S)\), where

1. \(V\) is a finite set called the **variables**
2. \(\Sigma\) is a finite set, disjoint from \(V\), called the **terminals**
3. \(R\) is a finite set of **rules**, with each rule being a variable and a string of variables and terminals
4. \(S \in V\) is the **start variable**

where

\[
\text{Example 5: A context-free grammar is a 4-tuple \((V, \Sigma, R, S)\).}
\]
Example 69

\[G_3 = (\{ S \}, \{ a, b \}, R, S) \]

where \(R = \{ S \to aSb | SS | \epsilon \} \)

Computation

Definition: If \(u, v, \) and \(w \) are strings of variables and terminals, and \(A \to w \) is a rule of the grammar, we say that \(uAv \) **yields** \(uwv \), written \(uAv \Rightarrow uwv \).

Definition: We say that \(u \) **derives** \(v \), written \(u \Rightarrow v \), if a sequence \(u = u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k = v \) exists for \(k \geq 0 \) and

\[a = n \Rightarrow n \Rightarrow \ldots \Rightarrow n \Rightarrow b n \Rightarrow n \] and \(a \neq n \)

Definition: The **language of the grammar** is \(\{ w \in \Sigma^* | S \Rightarrow^* w \} \).

Definition: We say that \(n \) **derives** \(a \), written \(n \Rightarrow a \), if \(a \) is a rule of the grammar, we say that \(n \) **yields** \(a \).

Definition: If \(n, v \), and \(w \) are strings of variables and terminals,
Overview

• Context-Free Grammars
⇒ Designing CFGs
• Ambiguity

Example

$G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle)$

$V = \{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle\}$

$\Sigma = \{a, +, \times, (,)\}$

$R =$

$\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle | \langle \text{TERM} \rangle$

$\langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle | \langle \text{FACTOR} \rangle$

$\langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid a$

• How would we generate $a + a \times a$?

• How would we generate $(a + a) \times a$?

Parse captures the meaning a string

$\{i | i, +, \times, a, \} = \mathcal{L}$

$\{\langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle\} = \mathcal{L}$

G_4
Designing: Hint 2

• If the language is regular - Construct a DFA for it - Convert DFA to a CFG:
 + Add a rule for each state q_i
 + Make a variable R_i for each state q_i
 + Add the rule $R_i \rightarrow aR_j$ if $\delta(q_i, a) = q_j$
 + Or, if simpler, construct a NFA for it - Make a variable R_i for each state q_i
 + Add the rule $R_i \rightarrow R_j$ if $q_j \in \delta(q_i, \epsilon)$

If the language is regular

Designing Context-Free Grammars

• Might be more difficult to program in than a FA, as we are not used to using grammars to describe problems
 • Hint 1: Many CFLs are the union of simpler CFLs
 - Construct a grammar for each part and then combine them with $S \rightarrow S_1 | S_2 | \ldots | S_k$ where S_i is start variable for each individual grammar
 - Construct a grammar for each part and then combine them with $S \rightarrow S_1 \cup S_2 \cup \ldots \cup S_k$

Many CFLs are the union of simpler CFLs

Hint: Many CFLs are the union of simpler CFLs

Need to use grammars to describe problems more difficult to program in than a FA, as we are not
In more complex CFLs, strings may contain structures that appear recursively as parts of other structures.

Designing: Hint 4

- Place a variable that generates the structure in that location instead of an "a" that can occur alone. Parenthesized expression might appear multiple times.
- Example: arithmetic expression $a * b$ versus $p + c * (q + 6) * c + d$.
- Any place an 'a' can occur, an entire parenthesized expression might appear recursively as part of other structures.

Designing: Hint 3

- Some CFLs contain strings with two substrings that are linked.
- Machine needs to remember an unbounded amount of information about one of the substrings to verify that it corresponds properly to the other.
- Machine needs to remember an unbounded amount of information about one of the substrings with two substrings that are "linked."
Ambiguity

Sometimes a grammar can generate the same string in several ways.

- If a grammar derives a string in several ways, we say that the string is derivable ambiguously in the grammar.
- If at least one string is derivable ambiguously in the grammar, we say that the grammar is ambiguous.

But undesirable in a programming language.

+ Ambiguity in Natural Language: 'I saw Mary with the telescope.'
+ Undesirable in a programming language: 'a + b * c' doesn't always mean the same thing.

Intended meaning might be clear from context, intonation, world knowledge.

The distinction is important:

- Different ways
- Different meanings
- Different parses
- Different needs

Some examples of ambiguity in programming languages:

- 'a + b * c' doesn't always mean the same thing.
- 'a * b + c' doesn't always mean the same thing.
Another Example

Two parses for "the girl touches the boy with the flower"

- Is this bad?

\[
\begin{align*}
 \text{with} & \quad \left\langle \text{PREP} \right\rangle \\
 \text{touched} & \quad \left\langle \text{VERB} \right\rangle \\
 \text{boy} & \quad \left\langle \text{NOUN} \right\rangle \\
 \text{the} & \quad \left\langle \text{ARTICLE} \right\rangle \\
 \text{complex-Noun} & \quad \left\langle \text{CMPLX-NOUN} \right\rangle \\
 \text{complex-Verb} & \quad \left\langle \text{CMPLX-VERB} \right\rangle \\
 \text{Prep-Phrase} & \quad \left\langle \text{PREP-PHRASE} \right\rangle \\
 \text{Sentence} & \quad \left\langle \text{SENTENCE} \right\rangle \\
\end{align*}
\]

Example

What are the parses of \(a \times a + a \)?

Replace \(R \) with:

\[
\begin{align*}
 \left\langle \text{EXPR} \right\rangle & \quad \left\langle \text{EXPR} \right\rangle \\
 \left\langle \text{TERM} \right\rangle & \quad \left\langle \text{TERM} \right\rangle \times \left\langle \text{TERM} \right\rangle \\
 \left\langle \text{EXPR} \right\rangle & \quad \left\langle \text{EXPR} \right\rangle + \left\langle \text{EXPR} \right\rangle \\
 \left\langle \text{FACTOR} \right\rangle & \quad \left\langle \text{FACTOR} \right\rangle \\
\end{align*}
\]

\[
\begin{align*}
 \{ (\varnothing, \times, \cdot), a, +, \cdot \} & = \mathbb{A} \\
 \{ (\varnothing, \times, \cdot), a, \langle \text{EXPR} \rangle, \langle \text{TERM} \rangle \} & = \mathbb{G}_1 \\
\end{align*}
\]
Formal Definitions

• When we say a grammar generates a string ambiguously,
- It has two different parse trees, not two different derivations
+ Some derivations just different in what order rules are applied

• Sometimes, the language of an ambiguous grammar also has a non-ambiguous version (that generates the same language)
- Arithmetic has an unambiguous grammar that generates the same language, and so only assigns a single, meaningful, to each string

• Language is inherently ambiguous if no unambiguous grammar
- Example: \{y | \exists i,j,k \forall x \in \{a,b,c\} \text{ s.t. } y = x_1 i x_2 j x_3 k \}
- Ambiguity is if there are two different leftmost derivations
 - Can talk about leftmost derivation
 - At every step, replace leftmost variable
 - Some derivations just different in what order rules are applied
 + If has two different parse trees, not two different derivations

• When we say a grammar generates a string ambiguously,