Introduction

• Previous model is deterministic
 - Given a state and input, there is a unique state that we transition to
• In a nondeterministic machine
 - several choices may exist for what state to transition to next
• Nondeterminism is a generalization of determinism
 - Every deterministic machine is a nondeterministic machine
• Does nondeterminism add more power?
 - If so, in what sense?
• How does it compute?
 - Any time there is a choice, run a copy of the machine for each choice
 - If no subsequent state, that copy (computation path) dies
 - If any computation path accepts, accept the string

• Can think of nondeterminism as a tree of possibilities
 - Succeeds if one branch is possible

• Previous example:
 - Trace through 010110
 - What is language of machine?

• Why is NFA interesting? (not more powerful than DFA)
 - Allows us to express some problems in a simpler form
 - Prepares us for nondeterminism in more complex machines

Example

![Diagram of states and transitions]

• Additions
 - Allow multiple transitions from the same state and token
 - Allow no transition from a state and token
 - Allow epsilon transitions
 + Using no input to transition
Example

- What would an equivalent DFA be?
 - Do the case where just last character must be a 1
 - Where 2nd last character must be a 1
 - Where 3rd last character must be a 1

+ Note that NFA can guess when the string will end, simplifying its structure; but DFA must account for if the string has not finished yet.

- What language does it accept?
 - at state q1, it guesses that it is 3 characters from the end

- Non-determinism used to guess when end of string will be
 - If guess is wrong, computation path dies out

Example (continued)
Another Example

- Add epsilon labels from q_2 to q_3 and from q_3 to q_4
 - What language will it now accept?
 - How do we modify the DFA?
A non-deterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

1. Q is a finite set of states
2. Σ is a finite alphabet
3. $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the transition function
 - Note: $\mathcal{P}(Q)$ is the power set of Q — all possible subsets
 - Note: Σ_ϵ is $\Sigma \cup \{\epsilon\}$
4. $q_0 \in Q$ is the start state
5. $F \subseteq Q$ is the set of accept states

Example

- What is its formal definition?
Definition of Computation

Definition: Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ. We say that N accepts w if w can be written as $y_1y_2\ldots y_m$ where $y_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \ldots, r_m such that
1. $r_0 = q_0$
2. $r_{i+1} \in \delta(r_i, y_{i+1})$
3. $r_m \in F$

• Note that there are many choices for a sequence
 - It accepts if any legal sequence ends will an accept state

Overview

• Non-determinism
• Formal Definition
 ⇒ Equivalence of NFA and DFA
Equivalence of NFA and DFA

- DFA and NFA recognize the same class of languages
 - A language can be recognized by a DFA iff can be recognized by a NFA
- Surprising!!
 - NFAs seem to be more powerful than DFA due to nondeterminism
- Useful
 - Means we can use nondeterminism to show that a language is regular
 - Use NFAs to show that regular languages are closed under composition

Theorem

- 2 machines are equivalent if they recognize the same language

Theorem 1.39: Every NFA has an equivalent DFA.

- Proof Idea (ignoring epsilon transitions)
 - NFA is basically exploring a bunch of paths in parallel
 - As it is consuming its input, it can be in one of a number of states
 + Think of this as putting a finger on each possible state that NFA can be in
 + To consume next input token, update each finger
 + Might add more fingers for splits
 + Might remove finger if computation path dead-ends, or converge
 - Construct DFA in which all possible subsets of states of the NFA are states of the DFA
 + If NFA has \(k \) states, DFA has \(2^k \) states
 + Transition function simulates how all of the fingers change
Proof (without Epsilon)

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be a NFA that recognizes some language A.
- Construct DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing A as follows
 + $Q' = \mathcal{P}(Q)$. $\mathcal{P}(Q)$ is the powerset of Q — all subsets
 + For $R \in Q'$ and $a \in \Sigma$, let $\delta'(R,a) = \{q \in \delta(r,a) \mid r \in R\}$
 + Each state in N can go to a set of states in N on input a.
 + So, take union of all successor states: $\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$
 + $q'_0 = \{q_0\}$.
 + $F' = \{R \in Q'|R$ contains an accept state of $N\}$
 + M accepts if one of the possible states that N could be in at this point is an accept state.
- Need to argue that for any string w, M accepts w iff N accepts w.
 + At each point in the computation, the possible states that N can be is the meta-state that M is in.
 + Would need to do this by induction. Simple enough that we won’t bother.
Now for Epsilon Transitions

- As we are tracing out computation in N, place additional fingers on all states that can also be reached by going along ϵ arrows after every step (this is simpler than before each step)
 - Consider $R \subseteq Q$
 + Let $E(R) = \{q | q \in Q$ and can be reached from a state in R
 by traversing 0 or more ϵ arrows\}
 Remember Q is the set of states of the NFA, so R is a state of the DFA, as is $E(R)$
 - Modify the transition function of M to take into account the states in N
 reachable after ϵ transitions
 + Change $\delta'(R, a) = \{q | q \in \delta(r, a)$ for some $r \in R\}$
 to $\delta'(R, a) = \{q | q \in E(\delta(r, a))$ for some $r \in R\}$
 - Also need to modify start state of M to be set of states reachable from
 with ϵ transitions: $q_0' = E(\{q_0\})$

Example

- NFA that recognizes language where last or 2nd last token is a 1
 - Step 1: Determine NFA diagram
 - Step 1: Give transition table for NFA
 - Step 2: Determine transition table for DFA (all states) ignore epsilon
 + by combining rows of NFA transition table
 - Step 3: Determine R for each state
 - Step 4: Apply R to start state of DFA
 - Step 5: Apply R to result of Step 2 (starting with start state)
Corollary

Corollary 1.40: A language is regular iff some NFA recognizes it

- **Proof ⇒**
 - Let A be a regular language
 - So, M a DFA recognizes it
 - M is also a NFA

- **Proof ⇐**
 - Let N be a NFA
 - By last theorem, there is a DFA that recognizes that language
 - So language must be regular