Deduction

• Not in book

1. Suppose to show there exists a DFA that recognizes \(L \)
2. Suppose to show that \(L \) is regular

Let \(L \) be any regular language

Prove that regular languages are closed under complementation

Show something is equivalent to a different problem

Prove that regular languages are closed under complementation

Let \(L \) be any regular language

Sufficient to show that \(\overline{L} \) is regular

Sufficient to show there exists a DFA that recognizes \(\overline{L} \)

So there must exist a DFA \(M \) that recognizes \(L \)

From a set of facts, deduce something that must be true

Closure Properties of Regular Languages

• Induction
• Construction
• Contradiction
• Deduction

Overview
Overview

- Deduction
- Construction
- Contradiction
- Induction
- Closure Properties of Regular Languages

How Much Detail?

- How is current line derived?
 - You can label each line and show what is used in deriving new lines
 - If obvious, or just use the previous line, don't need to number them
 - You can label each line and show what is used in deriving new lines
 - You don't have to be super detailed

If obvious, or just use the previous line, don't need to number them.
Regular Languages Closed under Complementation

Let \(L \) be any regular language.

Sufficient to show that \(\overline{L} \) is regular.

Sufficient to show there exists a DFA that recognizes \(\overline{L} \).

Since \(L \) is regular, there exists a DFA that recognizes it. Call it \(M \).

Let \(M = (Q, \Sigma, \delta, q_0, F) \).

Construct DFA \(M' = (Q, \Sigma, \delta, q_0, F') \) where

\[F' = Q - F. \]

Claim:

\(L(M') = \overline{L} \).

Let \(w \in L \). So \(M \) accepts \(w \). Let \(q \) be the state that \(M \) is in at the end of processing \(w \). So \(q \in F \).

So when \(M' \) processes \(w \), at the end of processing \(w \), it will also be in \(q \).

Since \(q \not\in F' \), \(M' \) does not accept \(w \). So \(w \not\in L(M') \).

Similarly, if \(w \in L(M') \), then \(w \not\in L \).

So \(L(M') = \overline{L} \).

Proof by Construction

- Sometimes disguised as "Prove that all regular languages are closed under complementation.
- Prove that there exists a DFA that recognizes \(\overline{L} \).
- Show that there exists a DFA that recognizes \(L \).
- \(a \ast b \ast\) is regular. Show that a DFA that recognizes \(a \ast b \ast\) exists.
- \(a \ast b \ast\) is regular iff there exists a DFA that recognizes \(a \ast b \ast\).
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
- \(a \ast b \ast\) is regular. Prove by coming up with an example.
Overview

- Deduction
- Construction
- Contradiction
- Induction
- Closure Properties of Regular Languages

How Much Detail?

- How much detail is needed?
 - Need to convince me that you know how to do the proof
 - Should be clear what you need to prove (2nd and 3rd line)
- Do you need to show construction does as is intended?
 - Should be clear when you need to prove (and not just state)
- Need to convince me that you know how to do the proof
- How much detail is needed?
 - Could add in:

\[\text{So if } w \in L, \text{ then } w \not\in L'(M') \]

- Notice the word 'let', as in 'let \(x \) be ...'
- Sometimes you can handwave
- Is the last line obvious enough?
 - Could add in:

\[\text{So } L = L'(M') \]
Proof by Contradiction

- Sometimes this is easier than trying to directly prove \(X \).

Assume that \(X \) is false, and show that you get a contradiction.

If you have to prove \(X \),
Induction

• Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers, such as:
 - number of states in a DFA
 - number of nodes in a graph
 - number of states in a DFA that are numbered in terms of some property P based on the natural numbers

• Break problem into a base case and an induction step:
 - Base case: prove that $P(1)$ is true
 - Induction step: prove that if $P(i)$ is true for $i \geq 1$ then so is $P(i+1)$

After proving both parts, you know that $P(i)$ must be true for $i \geq 1$.

Prove that all X's have a certain property where all X's can be categorized in terms of some property P based on the natural numbers, such as:

Induction

Closure Properties of Regular Languages

- Induction
- Contradiction
- Construction
- Deduction

Overview
Prove that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) for \(n \geq 1 \).

Proof by Induction:

1. **Base case:** prove for \(n = 1 \)

 \[\text{LHS} = \sum_{i=1}^{1} i = 1 \]

 \[\text{RHS} = \frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1 \]

 Since \(\text{LHS} = \text{RHS} \), true for base case.

Continued

- Many variations of this:
Overview

Close Properties of Regular Languages
- Induction
- Construction
- Contradiction
- Induction

⇒

Induction step:
Assume it is true for \(n \), prove it is true for \(n + 1 \).

So assuming \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \),

Need to prove that \(\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2} \).

Induction step: Assume it is true for \(n \), prove it is true for \(n + 1 \).
Proof Idea (continued)

• Approach 1:
 - We could have \(M \) first simulate \(M_1 \) and then simulate \(M_2 \)
 - This won't work because in simulating \(M_1 \), we will have used up the input with \(w \) on it, and we won't be able to get it back.

• Approach 2:
 - Simulate both \(M_1 \) and \(M_2 \) at the same time!
 - Have the states of \(M \) be the product of states of \(M_1 \) and \(M_2 \)
 - Have the transition function for \(M \) on \(w \) transition to the new state depending on what \(M_1 \) and \(M_2 \) would have individually done.
 - Have accepting states of \(M \) be any state with an accepting state from \(M_1 \) or from \(M_2 \).

Closed under Union

Definition of Union:
\[A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \]

Class of regular languages is closed under union:
If a FA \(A \) accepts \(A \), and \(A \) accepts \(B \) (each accepted by a FA), then there is a FA that accepts \(A \cap B \) (class of regular languages).
Example Continued

- Draw the two states vertically.
- Draw a state diagram for M_1 with 3 states: a, b, c.

Let A_1 be strings that have an even number of 1's.

- Draw the 3 states horizontally.
- Draw a state diagram for M_1 with 3 states: a, b, c.

Let A_2 be strings in which the number of 0's is divisible by 3.

\[\{ 0, 1 \} \]
Other Operations

- **Intersection**: \(A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \)
- **Complementation**: \(A^c = \{ x \mid x \notin A \} \)
- **Concatenation**: \(A \cdot B = \{ xy \mid x \in A \text{ and } y \in B \} \)
- **Star**: \(A^* = \{ x_1 x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \)

Formal Proof

Let \(M_1 \) recognize \(A_1 \) where
\[
M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)
\]

Let \(M_2 \) recognize \(A_2 \) where
\[
M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)
\]

\[Q\]

- \(\delta \):
- \(q_0 \):
- \(F \):

Construct \(M \) to recognize \(A_1 \cup A_2 \) where
\[
M = (Q, \Sigma, \delta, q_0, F)
\]

Let \(N \) recognize \(A \) where
\[
N = (Q, \Sigma, \delta, q_0, F)
\]

Construct \(M \) to recognize \(A \cap B \) where
\[
M = (Q, \Sigma, \delta, q_0, F)
\]

Let \(N \) recognize \(A \) where
\[
N = (Q, \Sigma, \delta, q_0, F)
\]