Deduction

• Not in book

• From a set of facts, deduce something that must be true

L is a regular language
So there must exist a DFA M that recognizes it

w is a string in the alphabet of \(\Sigma \)
So there must exist an \(n \geq 0 \) such that \(w = w_1 \cdots w_n \) and \(w_i \in \Sigma \)

Prove that regular languages are closed under complementation

\(\exists \omega \in \Sigma^* \) such that \(L = \{ \omega \in \Sigma^* \mid \text{for all } \sigma \in \Sigma, \omega \sigma \notin L \} \)

Show something is equivalent to a different problem

Prove that regular languages are closed under complementation

Let \(L \) be any regular language
Sufficient to show that \(\bar{L} \) is regular
Sufficient to show there exists a DFA that recognizes \(\bar{L} \)

Closure Properties of Regular Languages

• Construction
• Contradiction
• Induction
• Deduction
Overview

- Deduction
- Construction
- Contradiction
- Induction
- Closure Properties of Regular Languages

How Much Detail?

- How is current line derived?
- You can label each line and show when is used in deriving new lines
- You don't have to be super detailed
- Or obvious, or just use the previous line, don't need to number them
- How is current line derived?

So there exists an w such that $m = m_1 \cdot \ldots \cdot m_n$ and $w \in L$.

Or we don't need to say that n is a natural number.

Or what happens if $n = 0$, then there are no w_i.
Regular Languages Closed under Complementation

Let \(L \) be any regular language.
Sufficient to show that \(\overline{L} \) is regular.
Sufficient to show there exists a DFA that recognizes \(\overline{L} \).

Since \(L \) is regular, there exists a DFA that recognizes it. Call it \(M \).

Let \(M = (Q, \Sigma, \delta, q_0, F) \).

Construct DFA \(M' = (Q, \Sigma, \delta, q_0, F') \) where \(F' = Q - F \).

Claim: \(L(M') = \overline{L} \).

Let \(w \in L \) so \(M \) accepts \(w \).
Let \(q \) be the state that \(M \) is in at the end of processing \(w \).
So \(q \in F \).
So when \(M' \) processes \(w \), at the end of processing \(w \), it will also be in \(q \).
Since \(q \not\in F' \), \(M' \) does not accept \(w \).
So \(w \not\in L(M') \).

Similarly, if \(w \in L(M') \), then \(w \not\in L \).

So \(L(M') = \overline{L} \).

Proof by Construction

- Often asked to prove that a particular type of object exists.
- Question usually along the lines of:
 Prove that there exists ...
 Prove that for each \(n > 2 \), there exists ...
- Proof technique:
 - Prove by constructing an example
 - Prove by proving wp with an example
- Sometimes disguised as...
- Of demonstrating how to construct the object.

Proof by Construction
Overview

- Deduction
- Construction
 \[\Rightarrow \]
- Induction
- Closure Properties of Regular Languages

How Much Detail?

- How much detail is needed?
 - Need to convince me that you know how to do the proof
 - Should be clear what you need to prove (and why)
- Do you need to show construction does as intended?
 - Should be clear what you need to prove (and why)
 - Need to convince me that you know how to do the proof

\[I \not\in L \quad \text{so} \quad I = (\langle M \rangle) I \]\n
\[I \not\in L \quad \text{so} \quad I \not\in (\langle M \rangle I) I \quad \text{and if} \quad m \in L \quad \text{then} \quad (\langle M \rangle I) I \not\in L \]

Could add:
- Notice the word 'let', as in 'let \(x \) be ...'
- Sometimes you can handwave
- If question merely specify to just give the construction

So \(L = \bar{M} \)
Let \(A = \{ a^i b^i \mid i \geq 0 \} \). Assume \(A \) is regular.

So there exists DFA \(M \) such that \(L(M) = A \).

Let \(n \) be the number of states that \(M \) has.

Let \(s = a^n b^n + 1 \). Obviously \(s \in L(M) \).

Let \(r_0 \ldots r_{2n+2} \) be the state sequence for accepting \(s \).

Now consider the state sequence from \(r_0 \) to \(r_n \) in which each \(r_k \) on input \(a \) transitions to \(r_{k+1} \) for \(k \leq n \) (i.e., \(\delta(r_k, a) = r_{k+1} \)).

Since \(M \) just has \(n \) states, there must be at least one duplicate.

Let \(r_i \) and \(r_{i+j} \) be duplicate states, with \(j > 0 \), so \(r_i = r_{i+j} \).

Since \(r_{i+j} + 1 = \delta(r_{i+j}, a) \), then \(r_{i+j} + 1 = \delta(r_i, a) \).

So, \(r_0 \ldots r_i r_{i+j} + 1 \ldots r_{2n+2} \) is a valid state sequence and accepts \(a^{n+1} b^{n+1} - j \), contradicting the assumption that \(A \) is regular.
Induction

• Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers, such as:
 - number of states in a DFA
 - number of nodes in a graph
 - some variable that is restricted to the natural numbers

• Break problem into a base case and an induction step:
 - Base case: prove that P(1) is true
 - Induction step: prove that if P(i) is true for i ≥ 1 then so is P(i + 1)

• After proving both parts, you know that P(i) must be true for i ≥ 1.

Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers.

Overview

• Deduction
• Construction
• Contradiction
• Induction

• Closure Properties of Regular Languages
 - Induction
 - Construction
Proof by Induction:

Base case:
prove for \(n = 1 \)

LHS = \(\sum_{i=1}^{n} i \)

RHS = \(\frac{n(n+1)}{2} \)

Since LHS = RHS, true for base case

\(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)

• Many variations of this:
 - Starting at a number other than 1
 - Needing to prove two base cases \(P(1) \) and \(P(2) \)
 - Needing to assume \(P(j) \) is true for all \(j \leq i \) in order to prove \(P(i+1) \)
 - Stating a number other than 1

Continued
Overview

- Deduction
- Construction
- Contradiction
- Induction

⇒ Closure Properties of Regular Languages

Continued

Induction step:
Assume it is true for \(n \), prove it is true for \(n + 1 \).

So assuming \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \):

\[
\begin{align*}
\sum_{i=1}^{n+1} i &= \sum_{i=1}^{n} i + (n+1) \\
&= \frac{n(n+1)}{2} + (n+1) \\
&= \frac{n^2 + 3n + 2}{2}
\end{align*}
\]

LHS = \(\frac{n^2 + 3n + 2}{2} \)

RHS = \(\frac{n^2 + 3n + 2}{2} \)

Since LHS = RHS, true for \(n + 1 \).

\[
\begin{align*}
(1) & \quad z/(z + u + c) = \\
(2) & \quad z/(z + u)(1 + u) = SHT \\
(3) & \quad z/(z + u + c) = \\
(4) & \quad z/(z + u)(1 + u) = \\
(5) & \quad (1 + u) + z/(1 + u) = \\
(6) & \quad (1 + u) + \sum_{i=1}^{n} i = SHT \\
(7) & \quad z/(z + u)(1 + u) = \sum_{i=1}^{n} i = \sum_{i=1}^{n} i \\
(8) & \quad \sum_{i=1}^{n} i = \sum_{i=1}^{n} i \\
(9) & \quad \sum_{i=1}^{n} i = \sum_{i=1}^{n} i
\end{align*}
\]
Proof Idea (continued)

Approach 1:
- We could have M_1 first simulate M_1 and then simulate M_2.
- This won't work because in simulating M_1, we will have used up the input with w on it, and we won't be able to get it back.

Approach 2:
- Simulate both M_1 and M_2 at the same time!
- Let's assume M_1 be the product of states of M_1 and M_2.
- This won't work because in simulating M_1, we will have used up the input with w. We could have first simulated M_1 and then simulated M_2.

Closed under Union

Definition of Union:

$A \cup B = \{ x | x \in A \text{ or } x \in B \}$

Class of regular languages is closed under union.

Let A and B be regular languages (each accepted by a FA), then there is a FA M that accepts $A \cup B$.

Proof by construction:

If A and B are regular languages, there exists FA M_1 and M_2 such that $L(M_1) = A$ and $L(M_2) = B$.

Let $M' = \langle Q', \Sigma, \delta', q_0', F' \rangle$ be a FA that accepts $A \cup B$. Since A and B are regular languages, there exists FA M_1 and M_2 such that $L(M_1) = A$ and $L(M_2) = B$. Then M' is a FA that accepts $A \cup B$.
Example Continued

• What are the states of M (draw them in a 3x2 array)?

- Where does M transition to from a on 0?

- Where does M transition to from a on 1?

- Take each state, like a, and each input, like 0, and ask: Where are the transitions of M?

• What are the states of M (draw them in a 3x2 array)?

Example

Let $\Sigma = \{0, 1\}$

Let A_1 be strings in which the number of 0's is divisible by 3

- Draw a state diagram for M_1 with 3 states: a, b, c

- Draw the 3 states horizontally

Let A_2 be strings that have an even number of 1s

- Draw a state diagram for M_1 with 2 states: d, e

- Draw the two states vertically

Let A_3 be strings that have an even number of 1s

- Draw the two states vertically
Other Operations

Regular Languages

- Intersection
\[A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \]
- Complementation
\[\overline{A} = \{ x \mid x \notin A \} \]
- Concatenation
\[A \circ B = \{ xy \mid x \in A \text{ and } y \in B \} \]
- Star
\[A^* = \{ x_1 x_2 \cdots x_k \mid k \geq 0 \text{ and each } x_i \in A \} \]