Overview

⇒ Deduction
• Construction
• Contradiction
• Induction
• Closure Properties of Regular Languages

Deduction

• Not in book
• From a set of facts, deduce something that must be true
 L is a regular language
 So there must exist a DFA M that recognizes it
 w is a string in the alphabet of Σ
 So there exists an $n \geq 0$ such that $w = w_1 \ldots w_n$ and $w_i \in \Sigma$
• Show something is equivalent to a different problem
 Prove that regular languages are closed under complementation
 Let L be any regular language
 Sufficient to show that \overline{L} is regular
 Sufficient to show there exists a DFA that recognizes \overline{L}
Overview

- Deduction
 \[\Rightarrow \] Construction
- Contradiction
- Induction
- Closure Properties of Regular Languages
Proof by Construction

- Often asked to prove that a particular type of object exists
 - Question usually along the lines of
 Prove that there exists ...
 Prove that for each \(n > 2 \) there exists ...
- Proof technique:
 - Prove by coming up with an example
 - Or demonstrating how to construct the object
- Sometimes disguised
 - Show that \(a^*b^* \) is regular
 - \(a^*b^* \) is regular iff there a DFA that recognizes \(a^*b^* \)
 - Prove that regular languages are closed under complementation
 - Let \(L \) be any regular language
 Sufficient to show that \(\bar{L} \) is regular
 Sufficient to show there exists a DFA that recognizes \(\bar{L} \)

Regular Languages Closed under Complementation

Let \(L \) be any regular language
Sufficient to show that \(\bar{L} \) is regular
Sufficient to show there exists a DFA that recognizes \(\bar{L} \)
Since \(L \) is regular, there exists a DFA that recognizes \(\bar{L} \)
Let \(M = (Q, \Sigma, \delta, q_0, F) \)
Construct DFA \(M' = (Q, \Sigma, \delta, q_0, F') \) where \(F' = Q - F \)
Claim: \(L(M') = \bar{L} \)
Let \(w \in L \)
So \(M' \) accepts \(w \)
Let \(q \) be the state that \(M' \) is in at the end of processing \(w \)
So \(q \in F' \).
So when \(M' \) processes \(w \), at the end of \(w \), it will also be in \(q \).
Since \(q \notin F' \), \(M' \) does not accept \(w \)
So \(w \notin L(M') \)
Similarly, if \(w \in L(M') \) then \(w \notin L(M') \)
So \(L(M') = \bar{L} \)
How Much Detail?

- How much detail is needed?
 - Need to convince me that you know how to do the proof
 - Should be clear what you need to prove (2nd and 3rd line)
- Do you need to show construction does as is intended?
 - Sometimes you can handwave
 - Or question might specify to just give the construction
- Notice the word ‘let’, as in ‘let x be ...’
 - Used when it is obvious that such an object exists, but you need a name
to refer to any object of that type
- Is the last line obvious enough?
 - Could add in:
 So, if $w \in L$, then $w \notin L(M')$, and if $w \in L(M')$ then $w \notin L$
 So $L(M') = \overline{M}$

Overview

- Deduction
- Construction
 \Rightarrow Contradiction
- Induction
- Closure Properties of Regular Languages
Proof by Contradiction

- If you have to prove X, assume that X is false, and show that you get a contradiction.
- Sometimes this is easier than trying to directly prove X.

Prove $a^n b^n$ is not regular

Let $A = \{a^i b^i | i \geq 0\}$. Assume A is regular.

So there exists DFA M such that $L(M) = A$.

Let n be the number of states that M has.

Let $s = a^{n+1} b^{n+1}$.

Obviously $s \in L(M)$.

Let r_0, \ldots , r_{2n+2} be the state sequence for accepting s.

Now consider the state sequence from r_0 to r_n in which each r_k on input a transitions to r_{k+1} for $k \leq n$ (i.e., $\delta(r_k, a) = r_{k+1}$).

Since M just has n states, there must be at least one duplicate.

Let r_i and r_{i+j} be duplicate states, with $j > 0$, so $r_i = r_{i+j}$.

Since $r_{i+j+1} = \delta(r_{i+j}, a)$ then $r_{i+2j+1} = \delta(r_i, a)$.

So, r_0, r_{i+j+1}, r_{2n+2} is a valid state sequence and accepts $a^{n+1} b^{n+1}$.

So, we can cut out the intervening j states and still have an accepting state sequence.

So $a^{n+1-2j} b^{n+1} \in L(M)$.

Contradiction, so A is not regular.
Overview

- Deduction
- Construction
- Contradiction
- Induction
- Closure Properties of Regular Languages

Induction

- Prove that all Xs have a certain property where all Xs can be categorized in terms of some property P based on the natural numbers, such as:
 - number of states in a DFA
 - number of nodes in a graph
 - some variable that is restricted to the natural numbers

- Break problem into a base case and an induction step
 - Base case: prove that $P(1)$ is true
 - Induction step: prove that if $P(i)$ is true for $i \geq 1$ then so is $P(i + 1)$
 - After proven both parts, you know that $P(i)$ must be true for $i \geq 1$
 - Proved that $P(1)$ is true. Since $P(1)$ is true, so its $P(2)$. Since $P(2)$ is true, so is $P(3)$. Since $P(3)$ is true, so $P(4)$ etc
Continued

- Many variations of this:
 - Starting at a number other than 1
 - Needing to prove two base cases $P(1)$ and $P(2)$
 - Needing to assume $P(j)$ is true for all $j \leq i$ in order to prove $P(i + 1)$

Prove that $\sum_{i=1}^{n} i = n(n + 1)/2$ for $n \geq 1$

Proof by Induction:

Base case: prove for $n = 1$

\[
LHS = \sum_{i=1}^{n} i = 1 \quad (1)
\]

\[
RHS = n(n + 1)/2 = 1 * 2/2 = 1 \quad (3)
\]

Since LHS = RHS, true for base case
Continued

Induction step: Assume it is true for \(n \), prove it is true for \(n + 1 \)

So assuming \(\sum_{i=1}^{n} i = n(n + 1)/2 \)

Need to prove that \(\sum_{i=1}^{n+1} i = (n + 1)(n + 2)/2 \)

\[
LHS = \sum_{i=1}^{n+1} i
= \sum_{i=1}^{n} i + (n + 1)
= n(n + 1)/2 + (n + 1)
= (n(n + 1) + 2(n + 1))/2
= (n^2 + 3n + 2)/2
\]

\[
RHS = (n + 1)(n + 2)/2
= (n^2 + 3n + 2)/2
\]

Since LHS = RHS, true for \(n + 1 \).

Overview

- Deduction
- Construction
- Contradiction
- Induction

\(\Rightarrow \) Closure Properties of Regular Languages
Closed under Union

Definition of Union: $A \cup B = \{ x | x \in A \text{ or } x \in B \}$

- Class of regular languages is closed under union
 - If A_1 and A_2 are regular languages (each accepted by a FA), then there is a FA M that accepts $A_1 \cup A_2$
- Proof by construction:
 - Since A_1 and A_2 are regular languages, there exists FA M_1 and M_2 such that $L(M_1) = A_1$ and $L(M_2) = A_2$
 - Let’s construct M so that M accepts w if and only if one of M_1 and M_2 would accept it
 - Have M simulate the operations of M_1 and M_2

Proof Idea (continued)

- **Approach 1:**
 - We could have M first simulate M_1 and then simulate M_2
 - This won’t work because in simulating M_1, we will have used up the input with w on it, and we won’t be able to get it back
- **Approach 2:**
 - Simulate both M_1 and M_2 at the same time!
 - Have the states of M be the product of states of M_1 and M_2
 - Have the transition function for M on w_i transition to the new state depending on what M_1 and M_2 would have individually did
 - Have accepting states of M be any state with an accepting state from M_1 or from M_2
Example

• Let $\Sigma = \{0, 1\}$
• Let A_1 be strings in which the number of 0’s is divisible by 3
 - Draw a state diagram for M_1 with 3 states: a, b, c
 - Draw the 3 states horizontally

• Let A_2 be strings that have an even number of 1s
 - Draw a state diagram for M_1 with 2 states: d, e
 - Draw the two states vertically

Example Continued

• What are the states of M (draw them in a 3x2 array)

• What are the transitions of M?
 - Take each state, like ad, and each input, like 0, and ask:
 where does M_1 transition to from a on 0?
 where does M_2 transition to from d on 0?
Formal Proof

Let M_1 recognize A_1 where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$
Let M_2 recognize A_2 where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

- Construct M to recognize $A_1 \cup A_2$ where $M = (Q, \Sigma, \delta, q_0, F)$
 - Q:
 - δ:
 - q_0:
 - F:

Other Operations

- Are regular languages closed under
 - Intersection? $A \cap B = \{x | x \in A \text{ and } x \in B\}$
 - Complementation? $\overline{A} = \{x | x \notin A\}$
 - Concatenation? $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
 - Star? $A^* = \{x_1x_2...x_k | k \geq 0 \text{ and each } x_i \in A\}$