⇒ Min Priority Heap
Min Priority Heap (Chapter 6)

- **Binary Search Tree**
 - Insert Search Min in $O(\log(n))$ (average case)
- **What if**
 - You do not need search?
 - You want guaranteed $O(\log(n))$ time?
 - Want lower amount of overhead (smaller constant)?
- **Use a min priority heap**
Basic Idea

- It can be min or max priority heap (using max here)
- Ensure node value greater than everything in subtree below it
 - Less restrictive than a binary search tree
 - Makes it possible to keep the tree very bushy than a binary search tree

- Bushy tree:
 - Each layer filled left to right before next layer is started
 - Use array to store complete tree
Accessing Parent and Children

- Textbook starts array at 1 (homework will start at 0)
- How do we access
 - A node’s parent?
 - Left child?
 - Right child?
 - Max element?
- Maximum height of tree with n nodes?
Getting the Array into Max Heap format

• Start with an array that is in some random order
• Start at the last node \(n \), and work towards the first node
 - Make sure subtree rooted at \(n \) obeys max-heap property
 + If \(n \) is greater or equal to its maximal child, nothing to do
 + Otherwise swap \(n \) with its maximal child, and keep going down the tree
Example

```
1 14 3 2 16 8 4 10 7 9
...
1 14 3 2 16 8 4 10 7 9
1 14 3 10 16 8 4 2 7 9
1 14 3 10 16 8 4 2 7 9
1 14 3 10 16 8 4 2 7 9
1 14 3 10 16 8 4 2 7 9
1 16 8 10 14 3 4 2 7 9
1 16 8 10 14 3 4 2 7 9
1 16 8 10 14 3 4 2 7 9
1 16 8 10 14 3 4 2 7 9
1 16 8 10 14 3 4 2 7 9
1 16 8 10 14 3 4 2 7 9
```
Code

\[\text{MAX-HEAPIFY}(A, i)\]

1. \(l = \text{LEFT}(i) \)
2. \(r = \text{RIGHT}(i) \)
3. \textbf{if} \(l \leq A.\text{heap-size} \) \text{ and } \(A[l] > A[i] \) \textbf{then}
 \(\text{largest} = l \)
4. \textbf{else}
 \(\text{largest} = i \)
5. \textbf{if} \(r \leq A.\text{heap-size} \) \text{ and } \(A[r] > A[\text{largest}] \)
6. \(\text{largest} = r \)
7. \textbf{if} \(\text{largest} \neq i \)
8. \text{exchange} \(A[i] \) \text{ with } \(A[\text{largest}] \)
9. \(\text{MAX-HEAPIFY}(A, \text{largest}) \)
Build-Max-Heap

Build-Max-Heap(A)

1. \(A.heap-size = A.length \)
2. \textbf{for } i = \lfloor A.length/2 \rfloor \textbf{ downto } 1
3. \textbf{Max-Heapify} \((A, i)\)

- \(A.heap-size \) versus \(A.length \)
- Why that starting point?
- Running time?

© P. Heeman, 2017
Extracting Max

Heap-Extract-Max(A)

1. **if** A.$heap$-$size$ $<$ 1
2. **error** “heap underflow”
3. $max = A[1]$
5. A.heap$-$size$ = A.heap$-$size$ $-$ 1
6. **Max-Heapify** (A, 1)
7. **return** max
Inserting

HEAP-INCREASE-KEY \((A, i, key)\)

1. **if** \(key < A[i]\)
2. **error** "new key is smaller than current key"
3. \(A[i] = key\)
4. **while** \(i > 1\) and \(A[\text{PARENT}(i)] < A[i]\)
5. exchange \(A[i]\) with \(A[\text{PARENT}(i)]\)
6. \(i = \text{PARENT}(i)\)

• How can we use this to insert?