Course Evaluations
All-Pairs Shortest Paths (Chapter 25)

• Weighted Directed Graph

• Could run a single-source shortest paths algorithm $|V|$ times
 - If graph has negative weight edges and cycles
 + Bellman-Ford algorithm runs in $\Theta(EV)$
 + All vertices $\Theta(EV^2)$. Dense graph: $\Theta(V^4)$
 - If graph has no negative edges (like for route finding)
 + Dijkstra’s algorithm runs in $\Theta(E \log V)$
 + All vertices $\Theta(EV \log V)$. Dense: $\Theta(V^3 \log V)$

• Let’s do better! Mapping applications depend on this!
Adjacency Matrix

• Most of the algorithms in this chapter use adjacency matrix
 - Vertices numbered 1 to $|V|$ (let $n = |V|$)
 - Matrix is $W = (w_{ij})$

$$w_{ij} = \begin{cases}
0 & \text{if } i = j \\
\text{weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases}$$

• Output will be a $n \times n$ array $D = (d_{ij})$
 - d_{ij} will be shortest-path weight from i to j
 - Allowing negative weight edges, but no negative cycles

• Also need a predecessor matrix $\Pi = (\pi_{ij})$
 - $\pi_{ij} = \text{nil}$ if $i = j$ or no path from i to j
 - otherwise, π_{ij} is predecessor of j on some shortest path from i
 - So row i are all of the predecessors for shortest paths from i
Overview

⇒ Shortest Paths

• Shortest Paths and Matrix Multiplication

• Floyd-Warshall Algorithm
Dynamic Programming

• Characterize the structure of an optimal solution
• Recursively Define the value of an optimal solution
• Compute the value of an optimal solution in a bottom-up fashion
• Construct optimal solution from computed information
Optimal Substructure?

- Directed graph, negative edges, but no negative cycles
- Step 1 of dynamic programming
 - Characterize the optimal solution
- Say p is shortest path from u to v and $p = \langle v_0, v_1, ... v_k \rangle$
 - for any j, path $\langle v_0, v_1, ..., v_j \rangle$ is shortest for v_0 to v_j (Lemma 24.1)
 - but also for $i < j$, we have $\langle v_i, v_{i+1}, ..., v_j \rangle$ is shortest path for v_i to v_j
 - Can use these optimal subpaths over and over again!
 - But how?
 + For any i, j if we know that the last step goes from k to j, overall path is optimal path from i to k plus edge (k, j)
 + But is optimal path from i to k any simpler?
 + It will have one less edge than path from i to j
Recursively Define Value of an Optimal Solution

• Consider shortest paths up to length \(m \)
 - \(l^{(m)}_{ij} \) be min weight of any path from \(i \) to \(j \) that contains at most \(m \) edges
 - \(l^{(0)}_{ij} \) is 0 if \(i = j \) and \(\infty \) if \(i \neq j \)
 - \(l^{(m)}_{ij} = \min(l^{(m-1)}_{ij}, \min_{1 \leq k \leq n}(l^{(m-1)}_{ik} + w_{kj})) \)
 - \(l^{(m)}_{ij} = \min_{1 \leq k \leq n}(l^{(m-1)}_{ik} + w_{kj}) \) since can just add on \(w_{jj} \) which is 0

* Let \(L^{(m)} \) be the array with entries \(l^{(m)}_{ij} \). Can write \(L^{(m)} = (l^{(m)}_{ij}) \)
* What is \(L^{(1)} \)?
Shortest Path Weights

• If graph has no negative weight cycles
 - If \(j \) is reachable from \(i \), shortest path exists from \(i \) to \(j \) will have at most \(n-1 \) edges
 - \(\delta(i, j) = l_{ij}^{(n-1)} \) since we can just pad on \(w_{j,j} \)
 - In fact \(\delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = ... \)
Computing Shortest-path Bottom-up

• Start with $L^{(1)} = W$
 - Compute $L^{(2)}$, then $L^{(3)}$, then $L^{(4)}$...
 - Just need the previous one to compute the next one

EXTEND-SHORTEST-PATHS (L, W)

1. $n = L$.rows
2. let $L' = (l'_{ij})$ be a new $n \times n$ matrix
3. for $i = 1$ to n
4. for $j = 1$ to n
5. $l'_{ij} = \infty$
6. for $k = 1$ to n
7. $l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})$
8. return L'

• Time complexity?

© P. Heeman, 2017
Rest of Code

SLOW-ALL-PAIRS-SHORTEST-PATHS (*W*)

1. \(n = W\.rows \)
2. \(L^{(1)} = W \)
3. **for** \(m = 2 \) **to** \(n - 1 \)
4. let \(L^{(m)} \) be a new \(n \times n \) matrix
5. \(L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W) \)
6. **return** \(L^{(n-1)} \)

- Can view this as: ESP(...,ESP(ESP(W,W),W)...,W)
Example

- \(L^{(1)} \) is just \(W \)
- \(L^{(2)} \) is like \(W \) but for hops of at most length 2

\[
L^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(3)} = \begin{pmatrix}
0 & 3 & 2 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(4)} = \begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0 \\
\end{pmatrix}
\]
Overview

• Shortest Paths

⇒ Shortest Paths and Matrix Multiplication

• Floyd-Warshall Algorithm
Shortest Paths is like Matrix Multiplication

EXTEND-SHORTEST-PATHS \((L, W)\)

1. \(n = L\.\text{rows}\)
2. let \(L' = (l'_{ij})\) be a new \(n \times n\) matrix
3. for \(i = 1\) to \(n\)
 4. for \(j = 1\) to \(n\)
 5. \(l'_{ij} = \infty\)
 6. for \(k = 1\) to \(n\)
 7. \(l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})\)
8. return \(L'\)

SQUARE-MATRIX-MULTIPLY \((A, B)\)

1. \(n = A\.\text{rows}\)
2. let \(C\) be a new \(n \times n\) matrix
3. for \(i = 1\) to \(n\)
 4. for \(j = 1\) to \(n\)
 5. \(c_{ij} = 0\)
 6. for \(k = 1\) to \(n\)
 7. \(c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}\)
8. return \(C\)

- Pretty similar
 - \(+\) ⇒ \(\times\) and \(\min\) ⇒ \(+\)
 - Identity for \(\min\) ⇒ identify for \(+\)
 - In fact, just as matrix \(\times\) is associative, so is Extend-Shortest-Paths

 \[L^{(4)} = ESP(ESP(ESP(W,W),W),W) = ESP(EPS(W,W),EPS(W,W)) \]
Towards a Faster Implementation

- $L^{(1)}$ is just W
- $L^{(2)}$ is like W but for hops of at most length 2
- To compute $L^{(4)}$, can call routine on $L^{(2)}$ and $L^{(2)}$
- To compute $L^{(8)}$, can call routine on $L^{(4)}$ and $L^{(4)}$
- Can compute $L^{(n-1)}$ in $O(\lfloor \log n \rfloor)$ steps
- Overall time is $O(V^3 \log(V))$

* Is this impressive? Dijkstra’s on all vertices also is $O(V^3 \log(V))$
Overview

• Shortest Paths
• Shortest Paths and Matrix Multiplication
⇒ Floyd-Warshall Algorithm
Structure of a Shortest Path

• Previously, characterized the optimal substructure for a shortest path from $s \rightsquigarrow v$ as $s \rightsquigarrow u \rightarrow v$
 - Consider paths of shorter and shorter lengths
 - Applied dynamic programming in bottom-up approach

• Think of the binary back-pack problem
 - How did we formulate the subproblems?
Different Optimal Substructure Approach

• Say G has n vertices: $\{1, \ldots, n\}$

• Consider subset $\{1, \ldots, k\} = V_k$

• For any pair of vertices i, j
 + Consider paths whose intermediate vertices are in $\{1, \ldots, k\}$
 + Say p is a minimum weight path in that set

• Case 1: k is not an intermediate vertex in p
 + All intermediate vertices of p are in $\{1, \ldots, k - 1\}$
 + Shortest path from i to j with all intermediate vertices in V_{k-1} is a shortest path with all intermediate vertices in V_k

• Case 2: k is an intermediate vertex in p
 + We can assume that k just appears once in p
 + Can decompose p into $i \xrightarrow{p_1} k \xrightarrow{p_2} j$ where all intermediate vertices of p_1 and p_2 are in V_{k-1}
Recursive Solution

- Let $d_{ij}^{(k)}$ be the weight of a shortest path from i to j for which all intermediate vertices are in V_k.

- $d_{ij}^{(0)} = w_{ij}$ since cannot have any intermediate vertices $V_0 = \emptyset$
 - Can at most have one edge: (i, j) if it is in E
 - If no edge (i, j), $w_{ij} = \infty$

- $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
 - WOW!
FLOYD-WARSHALL (W)

1. \(n = W.rows \)
2. \(D^{(0)} = W \)
3. for \(k = 1 \) to \(n \)
 4. let \(D^{(k)} = (d^{(k)}_{ij}) \) be a new \(n \times n \) matrix
 5. for \(i = 1 \) to \(n \)
 6. for \(j = 1 \) to \(n \)
 7. \(d^{(k)}_{ij} = \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) \)
8. return \(D^{(n)} \)

• Time complexity?
Determining the Paths

• Need to keep track of the predecessors

• $\Pi^{(i)}$ corresponds to $D^{(i)}$ for $0 \leq i \leq n$

 - $\pi_{ij}^{(i)}$ predecessor of j on shortest path from vertex i with all intermediate vertices in V_k

• $\pi_{ij}^{(0)} = ??$

• How do we modify code?