Minimum Spanning Trees (Chapter 23)

• Connected Undirected graph
• Edges have weights
• Find minimum weight subset of edges that connects every vertex and is acyclic
 - Must be connected
 - Does not need to be a path
 + Hence the use of the term spanning tree

*Do we need to require the min spanning tree to be acyclic?
*What about an unweighted graph?
*What might this be used for?
*How fast might this be?
Overview of Chapter

• Lay ground work
 - Generic minimum spanning tree method

• Contrast two algorithms
 - Kruskal’s algorithm
 - Prim’s algorithm

• Both make use of the generic method

• Both are greedy algorithms
 - *Greedy strategy advocates making the choice that is best at the moment*
 - Can prove their greedy strategy is optimal
Overview

⇒ Growing a Min Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
Growing a Min-Spanning Tree

• Let $G = (V, E)$ with a weight function $w : E \rightarrow \mathbb{R}$

• Generic Method for growing a tree
 - Grow set A (a set of edges) starting with $A = \emptyset$
 - Loop invariant:
 A is a subset of some minimum spanning tree
 - At each step, determine an edge (u, v) that we can add to A that maintains loop invariant:
 $+ \{(u, v)\} \cup A$ is a subset of a min spanning tree
 - Such an edge is called a *safe edge*

Greedy?
Optimal?
Difficulty?
• Definitions:
 - **Cut** \((S, V-S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\)
 - Edge \((u, v) \in E\) **crosses** cut \((S, V-S)\) if one vertex in \(S\) other in \(V-S\)
 - A cut **respects** a set of edges \(A\) if no edge in \(A\) crosses the cut
 - Edge is a **light edge** crossing a cut if its weight is min of any edge crossing cut. Can be ties.

© P. Heeman, 2017
Finding Safe Edges

- Definitions:
 - **Cut** \((S, V-S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\)
 - Edge \((u, v) \in E\) crosses cut \((S, V-S)\) if one vertex in \(S\) other in \(V-S\)
 - A cut respects a set of edges \(A\) if no edge in \(A\) crosses the cut
 - Edge is a **light edge** crossing a cut if its weight is min of any edge crossing cut. Can be ties.

Theorem 23.1
Let \(G = (V, E)\) be a connected, undirected graph with \(w : E \rightarrow \mathbb{R}\).
Let \(A\) be subset of \(E\) that is included in some min-spanning tree for \(G\).
Let \((S, V-S)\) be any cut of \(G\) that respects \(A\).
Let \((u, v)\) be a light edge crossing \((S, V-S)\).
Then edge \((u, v)\) is safe for \(A\)
Theorem 23.1: In Plain English

• If you have A, a partial min-spanning tree for G
 - Pick some vertices to make a cut that respects A
 - Find light edge: edge of min weight that crosses cut
 - It is a safe edge

• Questions:
 - Is it hard to find such a cut?
 - How should we pick cut?
 - Do we evolve the cut, or pick a fresh cut each time?

• Any algorithm that follows Theorem 23.1
 - Will find minimum spanning tree
 - Will it be greedy?
Proof (Not by contradiction)

Let T be a min-spanning tree that includes A
Let $(S, V- S)$ be a cut that respects A
Let (u, v) be a light edge that crosses the cut

Case 1: $(u, v) \in T$. Done

Case 2: $(u, b) \notin T$
There is a simple path p in T from u to v since T is a min spanning tree (u, v) and p forms a cycle
u and v are on opposite sides of the cut $(S, V - S)$ that respects A
Hence, at least one other edge in p, say (x, y), must cross cut.
(x, y) is not in A, since the cut respects A (so it was added later).
Create T' by removing (x, y) and adding (u, v).
T' will be a spanning tree.
Since (u, v) is light, its weight must be same as (x, y).
So T' will also be a min spanning tree.
Another way to look at the Algorithm

\[G = (V, E) \text{ and } A \subseteq E \]

• Define \(G_A = (V, A) \) (the graph with the edges \(A \))
 - \(G_A \) is a forest
 - Each connected component in \(G_A \) is a tree (no cycles, connected)

• Algorithm
 - Start with \(A = \emptyset \). \(G_A \) has \(|V| \) trees
 - Any safe edge \((u, v)\) will connect two distinct components of \(G_A \)
 + regardless of how a cut is chosen
 - Each iteration reduces the number of components by 1
 - Ends when there is just one component
Corollary 23.2

Let $G = (V, E)$ be a connected, undirected graph with $w : E \rightarrow \mathbb{R}$
Let A be a subset of E that is in some min spanning tree of G
Let $C = (V_C, E_C)$ be a connected component (tree) in forest $G_A = (V, A)$.
If (u, v) is a light edge between C and some other component in G_A, then (u, v) is safe for A

• Questions
- What is the cut that the light edge is crossing?
- How does this restrict the previous algorithm
 + How does this restrict what cut is used?
- What choices are left?
Overview

• Growing a Min Spanning Tree
 ⇒ Kruskal’s Algorithm
• Prim’s Algorithm
Kruskal’s Algorithm

• Pick edge \((u, v)\) of min weight connecting any two trees in \(G_A\)
 - Can this be proved correct by Corollary 23.2?
Kruskal’s Algorithm

• Pick edge \((u, v)\) of min weight connecting any two trees in \(G_A\)
 - Can this be proved correct by Corollary 23.2?

 + You actually pick the edge first, say \((u, v)\)
 + Then you specify what \(C_1\) is: component that \(u\) is in
 + Since \((u, v)\) is minimum, it is a min edge coming out of \(C_1\)
MST-KRUSKAL\((G, w)\)

1. \(A = \emptyset\)
2. for each vertex \(v \in G.V\)
 3. MAKE-SET\((v)\)
4. sort the edges of \(G.E\) into nondecreasing order by weight \(w\)
5. for each edge \((u, v) \in G.E\), taken in nondecreasing order by weight
 6. if FIND-SET\((u) \neq FIND-SET(v)\)
 7. \(A = A \cup \{(u, v)\}\)
 8. UNION\((u, v)\)
6. return \(A\)

- What data structures does it need?
MST-Kruskal(G, w)
1 \(A = \emptyset \)
2 \textbf{for} each vertex \(v \in G.V \)
3 \textbf{MAKE-SET}(v)
4 sort the edges of \(G.E \) into nondecreasing order by weight \(w \)
5 \textbf{for} each edge \((u, v) \in G.E \), taken in nondecreasing order by weight
6 \textbf{if} \textbf{ FIND-SET}(u) \neq \textbf{ FIND-SET}(v)
7 \hspace{1em} A = A \cup \{(u, v)\}
8 \hspace{1em} \textbf{UNION}(u, v)
9 \textbf{return} A

• What data structures does it need?
 + Components: disjoint sets (forest implementation is faster)
 + Edges: sort it into an array (min priority queue not needed)
 + Min-spanning edges: array
Example

© P. Heeman, 2017
Running Time

- **Lines 4: $O(E \log E)$**
- **Set operations**
 - $O(V)$ make-set
 - $O(E)$ find-set
 - $O(V)$ union
 - $O(V + E)$ operations
- Graph is fully connected so $|E| \geq |V| - 1$
- So $O(E)$ operations
- From Chapter 21.4: $O(E \log E)$

- **Overall $O(E \log E) = O(E \log V)$**
 - $|E| < |V|^2$

MST-KRUSKAL(G, w)

```python
1   A = ∅
2   for each vertex $v \in G.V$
3       MAKE-SET($v$)
4   sort the edges of $G.E$ into nondecreasing order by weight $w$
5   for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
6       if FIND-SET($u$) $\neq$ FIND-SET($v$)
7         $A = A \cup \{(u, v)\}$
8       UNION($u, v$)
9   return $A$
```
Overview

• Growing a Min Spanning Tree
• Kruskal’s Algorithm
⇒ Prim’s Algorithm
Prim’s Algorithm

• Edges in A always form a single tree
 - Start with an arbitrary vertex
 - Add a light edge that connects A to a new vertex

• To determine next vertex to add
 - Go through all edges to find min connecting A to a vertex not in A
 - Can easily be $O(VE)$
A Better Way

• For each vertex not in A
 - Keep its min weight/edge to any vertex in A
 - No edge to A: use ∞

• When new vertex u added to A
 - For all vertices v adjacent to u, see if u provides better way to A (via u)
 - If it does, update its weight/edge

• Need to update weights: min-priority queue
MST-PRIM\((G, w, r)\)

1. \textbf{for} each \(u \in G.V\)
2. \(u.key = \infty\)
3. \(u.\pi = \text{NIL}\)
4. \(r.key = 0\)
5. \(Q = G.V\)
6. \textbf{while} \(Q \neq \emptyset\)
7. \(u = \text{EXTRACT-MIN}(Q)\)
8. \textbf{for} each \(v \in G.Adj[u]\)
9. \hspace{1em} \textbf{if} \(v \in Q\) and \(w(u, v) < v.key\)
10. \hspace{1em} \(v.\pi = u\)
11. \hspace{1em} \(v.key = w(u, v)\)
Example
Running Time

• Use min priority queue
 - $O(V)$ to build heap. Why?

- For each vertex, for each edge

- Updating key

MST-PRIM(G, w, r)

1. for each $u \in G.V$
2. $u.key = \infty$
3. $u.\pi = \text{NIL}$
4. $r.key = 0$
5. $Q = G.V$
6. while $Q \neq \emptyset$
7. $u = \text{EXTRACT-MIN}(Q)$
8. for each $v \in G.\text{Adj}[u]$
9. if $v \in Q$ and $w(u, v) < v.key$
10. $v.\pi = u$
11. $v.key = w(u, v)$