Overview

⇒ Hash Tables

• Chaining

• Hash Functions Chapter 11.3

• Open Addressing (Chapter 11.5)
Dictionary Operations

- Dictionary operations: insert, search, delete
 - Search means ...
 + Was the key inserted into the table?
 + Set membership
 + To find the value of satellite data associated with the key
 - Should be efficient. Hopefully $O(1)$
Direct-Address Tables

- When $|U| \sim |K|$

DIRECT-ADDRESS-SEARCH(T, k)
1. return $T[k]

DIRECT-ADDRESS-INSERT(T, x)
1. $T[x.key] = x$

DIRECT-ADDRESS-DELETE(T, x)
1. $T[x.key] = \text{NIL}$

Each of these operations takes only $O(1)$ time.
Hash-Tables

- When \(|U| \gg |K|\)
 + Reduce storage requirements but still maintain \(O(1)\) access time
 + Terminology: \(k\) hashes to \(h(k)\)

\[T \]

\(0\)

\(h(k_1)\)

\(h(k_4)\)

\(h(k_2) = h(k_5)\)

\(h(k_3)\)

\(m-1\)

\(U\) (universe of keys)

\(K\) (actual keys)

\(k_1\)

\(k_2\)

\(k_3\)

\(k_4\)

\(k_5\)
Collisions

• Two keys might hash to the same value
 - Collision
 - Can happen since size of universe \gg size of hash table

• Try to avoid collisions as much as possible
 - Hash function is deterministic: $h(k)$ is always same value
 - Will hopefully map keys randomly across the hash table
Overview

• Hash Tables
⇒ Chaining
• Hash Functions Chapter 11.3
• Open Addressing (Chapter 11.5)
Collision Resolution by Chaining
Efficiency of Dictionary Operations

- **Insert(T,x)**
 - Insert x at the head of list $T[h(x.key)]$
 - If we do not check if x.key is already in list: $O(1)$

- **Search(T,k)**
 - Search for an element with key k in list $T[h(k)]$
 - Worst case: proportional to length of list

- **Delete(T,x)**
 - Delete x from list $T[h(x.key)]$
 - $O(1)$ time since we already have pointer to element and if doubly-linked
Analysis of Hashing with Chaining

- Load factor α: n/m where n is keys stored, and m is size of table
- Worse-case for search is $\Theta(n)$
 - Same as using one linked list for all elements
- Average-case performance of hashing depends on how well h distributes keys among m slots on average
 - Let n_j be length of list $T[j]$ for $0 \leq j \leq m$
 - So $\sum_{i=0}^{m-1} n_i = n$
 - So $E[n_j] = \alpha = n/m$
 - But what is the expected value for hash values that are used?
 + If keys not distributed randomly, could still be all in one hash value
 so search takes $\Theta(n)$ time
Analysis of Search

• Assume hash of key is independent of keys already inserted
 - Referred to as simple uniform hashing assumption

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1 + \alpha)$, under simple uniform hashing assumption.

Proof:
Under assumption of simply uniform hashing, any key k not already stored in table is equally likely to hash to any of the m slots.

Expected time to search unsuccessfully for k is expected time to search to end of list $T[h(k)]$, which has expected length $E[n_{h(k)}] = \alpha$.

Thus, expected number of elements examined in an unsuccessful search is α, and total time including computing $h(k)$ is $\Theta(1 + \alpha)$.
Successful Search

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a **successful** search takes average-case time $\Theta(1 + \alpha)$, under simple uniform hashing.

Proof:
We assume element being searched x for is equally likely to be any of the n elements stored in the table.

How many other elements are in the same list?

How far x is from front of list?

Textbook gives a big derivation, but under simple uniform hashing works out to be $\Theta(1 + \alpha)$
Implications

• Load factor α: n/m where n is keys stored, and m is size of table
• Search time depends on load factor
 - If number of keys used is proportional to size of table
 + Search is $O(1)$ time
Overview

• Hash Tables
• Chaining
⇒ Hash Functions Chapter 11.3
• Open Addressing (Chapter 11.5)
What Makes a Good Hash Function?

• Should satisfy assumption of simple uniform hashing
 - Each key is equally likely to hash to any of the m slots regardless of what the other keys have hashed to
 - But, rarely know the probability distribution from which keys are drawn

• Domain knowledge might help in designing hash function
 - If we know keys are random real numbers k independently and uniformly distributed in range $0 \leq k < l$
 + Good hash function?
 - Hashing English words: be careful of ‘hat’ and ‘hats’
 + Don’t use suffix ... or prefix

• Good approach
 - Make hash function independent of any patterns that might exist in data
Division Method

• Assume keys are in the set of natural numbers
 - Otherwise find way to map them to numbers
• Take remainder of k modulo m: $h(k) = k \mod m$
 - Allows you to map onto all of the slots in the table
 - Seems that we pick size of table so that it works well for hashing
• Do not use m as a power of 2
 - Otherwise just using the lowest-order bits of k
 - Make it depend on all of the bits of the key
 - Even using $m = 2^p - 1$ is problematic (see textbooks)
 - Prime not to close to a power of 2 seems to work out well
 - If $n = 2000$, and $\alpha = 3$ seems reasonable, can pick $m = 701$ since it is a prime near $2000/3$ but not near any power of 2
Multiplication Method

• $h(k) = \lfloor m(kA \mod 1) \rfloor$
 - First multiply key k by a constant A in the range $0 < A < 1$ and extract the fraction part of kA
 - Then multiply it by m and take the floor of the result

• Advantage
 - Reduces dependency on m
Multiplication Method: Typical approach

- $h(k) = \lfloor m(kA \mod 1) \rfloor$
 - A constant: $0 < A < 1$ \[m \text{ is size of table} \]

- Choose m be power of 2 ($m = 2^p$)
 - Suppose word size of machine is w bits and k fits into a single word
 - Restrict $A = s/2^w$ where s is integer $0 < s < 2^w$ (so $s = A \times 2^w$)
 - First multiply k by w-bit integer s
 - Result is $2w$ bits long with value $r_12^w + r_0$
 - Hash value is p most significant bits of r_0
Example

• Some values of A work better than others
 - Knuth suggests $A \approx (\sqrt{5} - 1)/2 = 0.6180339887$

• Example
 \[
 k = 123456 \\
 p = 14 \\
 m = 2^{14} = 16384 \\
 w = 32 \\
 \]
 set $A = s/2^{32}$ closes to Knuth’s suggestion: $A = 2654435769/2^{32}$
 \[
 k \times s = 327706022297664 = 76300 \times 2^{32} + 17612864 \\
 \]
 so $r_1 = 76300$ and $r_0 = 17612864$
 most 14 significant bits of r_0 yield $h(k) = 67$
Overview

- Hash Tables
- Chaining
- Hash Functions Chapter 11.3

⇒ Open Addressing (Chapter 11.5)
Open Addressing

• Do not use chaining to a linked-list for collisions
• Each table entry contains either an element of dynamic set or Nil
• When searching, systematically examine table slots until
 - find desired element
 - ascertain element is not in table
• Hash table can fill up
 - Load factor α cannot exceed 1
• Successively **probe** table until you find an empty slot to put the key

• Rather than probe starting at 0 (would require $\Theta(n)$)
 - Sequence of probes depends on key being inserted
 - Function takes inputs key and probe number
 $h: U \times \{0, 1, \ldots, m-1\} \to \{0, 1, \ldots, m-1\}$
 - Probe sequence for each key should be permutation of $\langle 0, 1, \ldots, m - 1 \rangle$

```plaintext
FUNCTION Hash-Insert(T, k)
    i = 0
    repeat
        j = h(k, i)
        if T[j] == NIL
            T[j] = k
            return j
        else
            i = i + 1
    until i == m
    error "hash table overflow"
```

© P. Heeman, 2017
Deletion

- Deletion from an open address table is difficult
 - If you delete a key from slot i by changing its entry to Nil
 Won’t be able to find any key k during whose insertion we had probed
 slot i and found it occupied

- Can add a special value ‘Deleted’
 - When searching, viewed as having a value
 - When inserting, viewed as nil

- Search times no longer depend on load factor α
 - Open addressing not commonly used when deletion is needed

- Any advantage of chaining with a linked-list?
Uniform Hashing

- Uniform Hashing
 - Generalizes simple uniform hashing
 - Probe sequence of each key is equally likely to be any of the $m!$ permutations of $\langle 0, 1, \ldots, m - 1 \rangle$
 - Difficult to implement, usually approximated
 - Do guarantee that each table entry is included
Linear Probing

• Let $h' : U \rightarrow \{0, 1, \ldots, m - 1\}$ be an ordinary hash function
 - Referred to as auxiliary hash function
 - Hash function: $h(k, i) = (h'(k) + i) \mod m$
 - Initial probe determines sequence: only m distinct prob sequences

• Primary Clustering
 - If there are i slots filled in a role, odds are i/m that hash function will
do initial hash to it, and cause cluster to grow by one
 - Will increase search times
Quadratic Probing

\[h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m \]

where \(h' \) is an auxiliary hash function
\(c_1 \) and \(c_2 \) are positive auxiliary constants

- Later positions are offset by amounts that depend on a quadratic (not linear) manner on the probe number \(i \)
- Much better performance than linear probing
 - To make full use of hash table, values for \(c_1, c_2, m \) are constrained
 - If initial probe is the same, so are all subsequent ones
 - Can lead to secondary clustering

- Still only \(m \) different probe sequences
Double Hashing

\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

• Initial probe depends on \(h_1 \)
• Successive probes are offset by \(h_2 \)
 - Now keys with same initial probe will not follow same probe sequence
• \(h_2(k) \) must be relatively prime with the hash-table size \(m \) for entire hash table to be search
 - Let \(m \) be a power of 2 and make \(h_2 \) always return odd numbers
 - Let \(m \) be prime and \(h_2 \) return a positive number less than \(m \)
 - Either approach gives \(\Theta(m^2) \) probe sequences
 + We can use \(\Theta, O \) and \(\Omega \) for any asymptotic analysis
Theorem 11.6

Given an open-address hash table with load factor $\alpha = n/m < 1$ (and no deletions) and uniform hashing assumption, expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$.

Intuition
Always make a first probe: 1
Make a second probe if first probe is unsuccessful α
Make a third probe? $\alpha \times \alpha$
Make a fourth probe? α^3
$\Sigma_{i=0}^{\infty} \alpha^i = 1/(1 - \alpha)$
If load factor is .9, number of probes is 10.
For chaining, $1 + \alpha$