Overview

⇒ Rod Cutting (Chapter 15.1)
Optimal Rod Cutting

- Cut rod into smaller rods to give best possible price

<table>
<thead>
<tr>
<th>length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price p_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

- Different ways to split a pipe of length 4

- If we cut a rod of length n into k pieces each of $i_1, i_2, ..., i_k$

 $n = i_1 + i_2 + ... + i_k$
 Revenue $= p_{i_1} + p_{i_2} + ... + p_{i_k}$

© P. Heeman, 2017
How to Find Maximum Revenue

• Want to find the cuts that result in the most revenue
 - Let r_n be the maximum revenue of a pipe of length n

• Cannot do this with divide and conquer
 - Do not know what an optimal first cut is

• Brute force
 - Pipe of length n has $n - 1$ possible points where it can be cut
 + Price out each of the 2^{n-1} different possible cuts
Optimal Substructure

- Alternatively, set up a recursive definition for max revenue
 \[r_n = \max(p_n, r_1 + r_{n-2}, r_2 + r_{n-3}, \ldots, r_{n-1} + r_1) \]
 - To solve a bigger problem, solve smaller problems of same type, but of smaller sizes
 - The overall solution incorporates optimal solutions to the two related subproblems
 - Has optimal substructure: optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently
Another Version

• Another version:

\[r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \ldots, r_{n-1} + r_1) \]

\[= \max(p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \ldots, p_{n-1} + r_1) \]

\[= \max_{i \leq i \leq n} (p_i + r_{n-i}) \]

- There will be a first cut to the rod
 + So do that first (rather than cutting in the middle of the rod)
 + Now just has one related subproblem
 + Just one recursion (can do through iteration)
- Still see the optimal substructure through the \(r_{n-1} \) term
Cut-Rod(p, n)

1. if \(n == 0 \)
2. return 0
3. \(q = -\infty \)
4. for \(i = 1 \) to \(n \)
5. \(q = \max(q, p[i] + \text{Cut-Rod}(p, n - i)) \)
6. return \(q \)

- Let \(T(n) \) be the total number of calls to Cut-Rod(p,n)
 - \(T(0) = 1 \)
 + Include the initial call Cut-Rod(p,0), which just returns 0
 - \(T(n) = 1 + \sum_{i=0}^{n-1} T(i) \)
 + Initial call + calling Cut-Rod on 0 to n-1
Running Time continued

\[T(0) = 1 \]
\[T(n) = 1 + \sum_{i=0}^{n-1} T(i) \]

\[T(1) = 1 + T(0) = 2 \]
\[T(2) = 1 + T(0) + T(1) = 4 \]
\[T(3) = 1 + T(0) + T(1) + T(2) = 8 \]
\[T(4) = T(3) + T(3) = 16 \]
\[T(5) = T(4) + T(4) = 32 \]
\[T(n) = 2^n \]
Dynamic Programming

• Naive solution keeps recomputing subproblems it has already seen

• Instead, remember results for subproblems
 - Thus dynamic programming might use more memory
 + Time-memory trade-off
 - But might transform exponential algorithm to polynomial
 - Dynamic programming runs in polynomial time if
 + at most polynomial number of distinct subproblems
 + Each takes at most polynomial time

• Can do dynamic programming top-down or bottom-up
Top-down with memoization

• Write procedure recursively
 - but modified to save the result of each subproblem
 + Usually in an array or hash-table
 - First check if already solved the subproblem

Cut-Rod \((p, n)\)

1. \(\text{if } n == 0\)
2. \(\text{return 0}\)
3. \(q = -\infty\)
4. \(\text{for } i = 1 \text{ to } n\)
5. \(q = \text{max}(q, p[i] + \text{Cut-Rod}(p, n - i))\)
6. \(\text{return } q\)

* How can we add in memoization?
Bottom-up method

• Depends on some natural notion of ‘size’ of a subproblem
 - such that subproblems depend only on ‘smaller’ subproblems
• Sort problems by size and solve them smallest first
 - Use saved solutions for its subproblem
 - Save solution when done

• Running time?

BOTTOM-UP-CUT-ROD \((p, n)\)

1. let \(r[0..n]\) be a new array
2. \(r[0] = 0\)
3. for \(j = 1\) to \(n\)
4. \(q = -\infty\)
5. for \(i = 1\) to \(j\)
6. \(q = \max(q, p[i] + r[j - i])\)
7. \(r[j] = q\)
8. return \(r[n]\)
Reconstructing a Solution

• We can find out the optimal price, but what are the optimal cuts?

• For string alignment, what is the actual alignment?