Overview

⇒ Chapter 4: Divide and Conquer
• Chapter 15: Dynamic Programming
• String Alignment Problems
• Framing the Problem Mathematically
• Algorithm for String Alignment
Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, just solve the subproblem in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original problem.

- Two cases:
 - Recursive case
 - Base case
Simple Example of Divide and Conquer

- Membership testing in a sorted array: \(x \in L? \)
 - See if \(x \) is equal, less, or more than the element halfway in \(L \)
 - If less, test \(x \) with first half of \(L \)
 - We either find the element, or get to an empty array: conquer
 - Combine by passing answer back up the recursion
 - Takes \(O(\lg(n)) \)

- Printing nodes in a tree
 - get str for left tree, for node, and for right tree
 - at a leaf, return string of node: conquered
 - combine: create string for entire node
Recursion versus Iteration

• Which of these two methods can be done using Iteration?

```python
def InOrderWalk(self):
    if self.left is not None:
        self.left.InOrderWalk()
    print self.key
    if self.right is not None:
        self.right.InOrderWalk()

def Search(self,k):
    if k == self.key:
        return self
    if k < self.key and self.left is not None:
        return self.left.Search(k)
    if k > self.key and self.right is not None:
        return self.right.Search(k)
    return None
```

© P. Heeman, 2017
Recursion

• If problem is divided into one smaller problem, can use loop
 - Membership testing (pick one half of the list)

• If problem is divided into several problems, use recursion
 - Printing tree, need to print both sides
Recurrences

- **recurrence** is an equation or inequality that describes a function in terms of its value on smaller inputs
 - natural way to characterize running time of divide and conquer algorithm

- Chapter 12: Printing tree
 - Had a recursive algorithm
 - Running time expressed as a recurrence
 \[
 T(n) \leq \begin{cases}
 c & n = 1 \\
 T(k) + T(n - k - 1) + d & n > 1
 \end{cases}
 \]
 - We used ‘substitution method’ to solve this
 + Guess the solution
 + Use induction to prove solution is correct
 - Textbook gives two other methods for solving them
Technicalities in Recurrences

• Emphasis on recurrences for large values of n
 - Ignore differences due to odd or even input size
 - Ignore differences for boundary conditions (on small n)
 + Will only effect running time by a constant, which is irrelevant for O and Θ
Example: Maximum-Subarray Problem

- Find the biggest upshift in prices
 - Perhaps to see how well you did in trading a stock versus the optimum
 - Can just buy/sell at end of day, over fixed period of time (say 100 days)
 - Can hold onto stock for any number of days
 - Must buy stock before selling it (no short sales)
Naive Solution

- Find global min and max: but global max might be before global min
- Other solutions?
Brute force

- Look at every pair of dates to find best one
 - array `price` has the end-of-day prices
 - Running time $\Theta(n^2)$

```python
best = -1
for j in range(99):
    for i in range(j+1,100):
        gain = price[i] - price[j]
        if gain > best:
            best = gain
```
Key Insight

• Rather than focus on the daily price
 - Focus on how much price has changed since prior day
 - Let $\text{delta}(i) = \text{price}(i) - \text{price}(i-1)$
 - Find a nonempty continuous subarray whose values have the largest sum
 + Referred to as ‘Maximum subarray’

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>100</td>
<td>113</td>
<td>110</td>
<td>85</td>
<td>105</td>
<td>102</td>
<td>86</td>
<td>63</td>
<td>81</td>
<td>101</td>
<td>94</td>
<td>106</td>
<td>101</td>
<td>79</td>
<td>94</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>Change</td>
<td>13</td>
<td>-3</td>
<td>-25</td>
<td>20</td>
<td>-3</td>
<td>-16</td>
<td>-23</td>
<td>18</td>
<td>20</td>
<td>-7</td>
<td>12</td>
<td>-5</td>
<td>-22</td>
<td>15</td>
<td>-4</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

• For dividing the problem
 - Split delta array in half
 - Max subarray is either entirely on one side or spans halfway point
Spanning Midpoint

• Maximum subarray that spans both sides (includes \text{delta(mid)} and \text{delta(mid+1)})
 - First, go backward from \text{mid} and find max sum
 - Then, go forward from \text{mid+1} and find max sum
 - Can be done in $\Theta(n)$
 - Not smaller instance of original problem, as it has an added restriction

\begin{verbatim}
FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high)
1 left-sum = -\infty
2 sum = 0
3 for i = mid downto low
4 sum = sum + A[i]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = -\infty
9 sum = 0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
\end{verbatim}
Find Max Subarray

\textbf{FIND-MAXIMUM-SUBARRAY} \((A, \text{low}, \text{high})\)

1. \textbf{if} \(\text{high} == \text{low}\)
2. \textbf{return} \((\text{low}, \text{high}, A[\text{low}])\) \hspace{1cm} // base case: only one element
3. \textbf{else} \(\text{mid} = \lfloor (\text{low} + \text{high})/2 \rfloor\)
4. \(\text{left-low, left-high, left-sum} = \)
 \textbf{FIND-MAXIMUM-SUBARRAY} \((A, \text{low}, \text{mid})\)
5. \(\text{right-low, right-high, right-sum} = \)
 \textbf{FIND-MAXIMUM-SUBARRAY} \((A, \text{mid} + 1, \text{high})\)
6. \(\text{cross-low, cross-high, cross-sum} = \)
 \textbf{FIND-MAX-CROSSING-SUBARRAY} \((A, \text{low}, \text{mid}, \text{high})\)
7. \textbf{if} \(\text{left-sum} \geq \text{right-sum} \text{ and } \text{left-sum} \geq \text{cross-sum}\)
8. \textbf{return} \((\text{left-low, left-high, left-sum})\)
9. \textbf{elseif} \(\text{right-sum} \geq \text{left-sum} \text{ and } \text{right-sum} \geq \text{cross-sum}\)
10. \textbf{return} \((\text{right-low, right-high, right-sum})\)
11. \textbf{else} \textbf{return} \((\text{cross-low, cross-high, cross-sum})\)

- Divide problem, conquer each part, combine
Running Time

• Let $T(n)$ be running time of algorithm on input size of n
 - For simplicity, assume n is a power of 2

Find-Maximum-Subarray $(A, low, high)$

1. if $high == low$

 return $(low, high, A[low])$ // base case: only one element

2. else mid = [(low + high)/2]

3. (left-low, left-high, left-sum) =

 Find-Maximum-Subarray (A, low, mid)

4. (right-low, right-high, right-sum) =

 Find-Maximum-Subarray $(A, mid + 1, high)$

5. (cross-low, cross-high, cross-sum) =

 Find-Max-Crossing-Subarray $(A, low, mid, high)$

6. if left-sum \geq right-sum and left-sum \geq cross-sum

 return (left-low, left-high, left-sum)

7. elseif right-sum \geq left-sum and right-sum \geq cross-sum

 return (right-low, right-high, right-sum)

8. else return (cross-low, cross-high, cross-sum)

Lines 1-3: $T(1) = \Theta(1)$

Lines 7-11: constant time
Running Time

• Let $T(n)$ be the running time of the algorithm on input size of n
 - Base case (just one element)
 + $T(1) = \Theta(1)$ (Lines 1 to 3 take constant time)
 - Recursive step: ($n > 1$)
 + Lines 1-3 take $\Theta(1)$
 + Line 4 takes $T(n/2)$
 + Line 5 takes $T(n/2)$
 + Line 6 takes $\Theta(n)$
 + Line 7-11 take constant time

$$T(n) = 2T(n/2) + \Theta(n) + \Theta(1)$$

$$= 2T(n/2) + \Theta(n)$$
Solving the Recurrence

• Used substitution method previously
 - Guess the form, and prove by induction
 - Works for O (upper bound), but not for Θ

• Master theorem: Another way of solving recurrences
 - Cookbook method for recurrences of form $T(n) = aT(n/b) + f(n)$
 where $a \geq 1$, $b > 1$ and $f(n)$ is asymptotically positive function
 - Captures any algorithm that divides problem into a smaller ones of size n/b, and solves them recursively
 - Technical point: More correct to use $T(\lfloor n/b \rfloor)$, but will not affect the asymptotic behavior
Master Theorem

Theorem 4.1 (Master theorem)

Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T(n) \) be defined on the nonnegative integers by the recurrence

\[
T(n) = aT(n/b) + f(n),
\]

where we interpret \(n/b \) to mean either \(\lfloor n/b \rfloor \) or \(\lceil n/b \rceil \). Then \(T(n) \) has the following asymptotic bounds:

1. If \(f(n) = O(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T(n) = \Theta(n^{\log_b a}) \).
2. If \(f(n) = \Theta(n^{\log_b a}) \), then \(T(n) = \Theta(n^{\log_b a} \log n) \).
3. If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \), and if \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T(n) = \Theta(f(n)) \).

- So for \(T(n) = 2T(n/2) + \Theta(n) \)
 + \(a = 2, b = 2, f(n) = \Theta(n) = \Theta(n^1) = \Theta(n^{\log_b 2}) \)
 + So use second case: \(T(n) = \Theta(n \log n) \)
Essential Point of Divide and Conquer

• Optimal Substructure:
 - solution to a given optimization problem can be obtained by the combination of optimal solutions to its subproblems

• Non-overlapping subproblems:
 - There is an obvious way to break the problem into subproblems (do not have to search over different subproblems)
 - The division into subproblems will give you the optimal solution
Problem not solvable with Divide and Conquer

- Finding the best route from A to B
- Divide problem,
 - Unclear what C should be used to split problem into A to C, and C to B
 - Many different ways to divide into subproblems
 - Choice will affect whether you find the optimal solution
Overview

• Chapter 4: Divide and Conquer
⇒ Chapter 15: Dynamic Programming
• String Alignment Problems
• Framing the Problem Mathematically
• Algorithm for String Alignment
Dynamic Programming

• Similar to divide-and-conquer

• Optimal Substructure:
 - solution to a given optimization problem can be obtained by the combination of optimal solutions to its subproblems

• Overlapping subproblems:
 - There is not a single obvious way to break the problem into subproblems
Example: Routing

• Has the optimal substructure problem
 - If C is on the optimal path from A to B (so A to B can be optimally divided into subproblems A to C and C to B)
 + Optimal solution to A to B is:
 optimal solution from A to C followed by optimal solution from C to B

• Overlapping subproblems:
 - Route from A to B can be divided by going through C, or D, or E
 + Don’t know which division is best
Brute Force

• Try each possible partition at each level
• Could lead to exponential time algorithm
Key Insight into Efficient Solution

• You have overlapping subproblems
e.g., A to C and C to B; versus A to D and D to B
 - there might be subproblems in common between these subproblems
e.g., A to X might be used in A to C and A to D
e.g., X to Y might be used in A to C and A to D and C to B and D to B

• Save solutions to these subproblems and do not recompute!
 - Memoize the results (or store in a table)
 - ‘Programming’ in dynamic programming actually refers to storing
 intermediate results in a table
Top Down or Bottom Up

- In a top down implementation
 - Before doing a subproblem, check table to see if already done it

- In bottom up
 - Start with small problems, and build up to larger ones
 - More straightforward
Overview

- Chapter 4: Divide and Conquer
- Chapter 15: Dynamic Programming
 ⇒ String Alignment Problems
- Framing the Problem Mathematically
- Algorithm for String Alignment
Matching DNA Sequences

- DNA of one organism might be:
 ACCGGTTCGAGTGCCTCGAAAGCCCGGCCGAA

- Of anther:
 GTCGTTTCGGAATGCCCGTTGCTCTGTAAA

- How similar are the strands?
 - What sequence of bases are common in both strands?
 - Find an alignment with the maximum number of matches

<table>
<thead>
<tr>
<th>ACCGGTTCGAGTGCCTCGAA</th>
<th>GCCGG</th>
<th>GC</th>
<th>C</th>
<th>G</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTCG</td>
<td>TTCG</td>
<td>GAATGCCCGTTGCTCTGTAAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTCG</td>
<td>T</td>
<td>CG</td>
<td>GAA</td>
<td>GCCGG</td>
<td>GC</td>
</tr>
</tbody>
</table>
Automatic Speech Recognition

- Also uses string alignment in scoring output with respect to a reference transcription
Sentence Recall Test

• Examiner says a sentence to the participant:
 * the little boy went to the store *

• Participant tries to repeat it verbatim:
 * the boy went to the store *
 * the boy went to a store *
 * a little lad goed to a store *

• Align the two sentences to find what the mistakes are

 - Interested in *insertions*, *deletions*, and *substitutions*

 * the → a *
 * boy → lad *
 * little → ε *
 * went → goed *
Overview

• Chapter 4: Divide and Conquer
• Chapter 15: Dynamic Programming
• String Alignment Problems
⇒ Framing the Problem Mathematically
• Algorithm for String Alignment
How do we frame the problem?

• For any alignment between two sequences
 - Score it based on the number of insertions, deletions, and substitutions
 - Penalty of 1 for insert/delete/sub and no penalty for match

• Find the alignment with the smallest penalty

• Let’s be more precise about what an alignment is
 - Let $a, b \in \Sigma^*$ and $a = a_1...a_n$ and $b = b_1...b_m$

 - Which indexes of a and b are part of a match or substitution
 - $A \subset \{1, 2, 3, ..., n\}$ and $B \subset \{1, 2, 3, ..., m\}$

 - 2^n possible values for A and 2^m for B

 - 2^{n+m} possible alignments
Example

• Aligment was implicit in the formatting
 - Blank spots have an epsilon in there alignment

• One alignment (8 deletes, 6 inserts, 1 subs)

 ACCGGTTCGAGTGC GCCG GCC GC C G AA
 GTCG TTCG GAATGCGCGTTGCTCTGTAAA

• A worse one (3 deletes, 2 inserts, 13 subs)

 ACCCGGT CGAGTGCGCGGAAGCCG GCCGAAGTCG TTCG GAA TGCC GT T GCTC TGT A AA

• Pick the best alignment (one with lowest score)
A Better Way to View an Alignment

- a (prompt) has n words/characters, b (response) has m words
- View prompt as columns and response as rows ($n \times m$ array)
- An alignment is a path through the cells where you can go:
 - Left (consume a word of the prompt but no word of response)
 + deletion
 - Down (consume a word of the response but no word of prompt)
 + insertion
 - Diagonal left-down (consume a word of response and prompt)
 + If words are the same: match, otherwise substitution
Example

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>little</th>
<th>boy</th>
<th>went</th>
<th>to</th>
<th>the</th>
<th>store</th>
</tr>
</thead>
<tbody>
<tr>
<td>little</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lad</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>yeah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

© P. Heeman, 2017
Overview

• Chapter 4: Divide and Conquer
• Chapter 15: Dynamic Programming
• String Alignment Problems
• Framing the Problem Mathematically

⇒ Algorithm for String Alignment
Brute Force

- How many paths through array are there?
- You can just go right, down or diagonally right down
 - Path is at most $n + m$ in length (no matches or substitutions)
 - At each point in path, at most 3 options (left, down, diagonal)
 - At most 3^{n+m} paths
- For each path, compute score
 + For each left or right move, add 1
 + For each diagonal move: determine if it is a match (0) or substitution (1)
- Can do some optimization
 - Keep track of best path so far, and prune paths if they are worse
 - Can do this as a depth-first search
 + Gets rid of some redundancy (of the first parts of the path)
 + But bottom right hand corner will be redone many times
Dynamic Programming

• Optimal Substructure?
 - If (i,j) and (k,l) is in the optimal solution, optimal path from (i,j) to (k,l) is part of solution

• Overlapping subproblems
 - Optimal path from (i,j) to (k,l) can be a subproblem of a lot of larger problems
Initialization

- Each cell will have optimal score to get from (0,0)
 - Fill in 0th row. Each move left implies we are deleting
 - Fill in 0th column. Each move down implies we are inserting

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>little</th>
<th>boy</th>
<th>went</th>
<th>to</th>
<th>the</th>
<th>store</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>little</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lad</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>goed</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>store</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yeah</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Filling in cells

- Fill in cell \((i, j)\) if cells above \((i, j-1)\), left \((i-1, j)\), diag \((i-1, i-j)\) filled in
- 3 possible ways to get to cell
 + From above: take score \((i, j-1)\) and subtract 1 (insert)
 + From left: take score of \((i-1, j)\) and subtract 1 (delete)
 + From left-above: take score of \((i-1, j-1)\) if match, else subtract 1 (substitution)
 + Take lowest

	the	little	boy	...
0	1	2	3	...
little	1	1	1	...
lad	2			
goed	3			
...	...			

© P. Heeman, 2017
Efficiency?

- Initialize row 0 $\Theta(n)$
- Initialize col 0 $\Theta(m)$
- For $m \times n$ cells
 - Determine value of each cell $\Theta(nm)$
- Assume n and m are similar in size
 - $\Theta(n^2)$ rather than $\Theta(3^n)$
How is it a Dynamic Programming Solution

for i in range(1,m):
 for j in range(1,n):
 diff = 0 if prompt[i] == response[j] else 1
 cell[i,j] = max(cell[i-1,j]+1,
 cell[i,j-1]+1,
 cell[i-1,j-1]+diff)

• Bottom-up algorithm
 + Order the subproblems from smallest to biggest
 + Will already have values for smaller problems when needed by bigger problems

• Dynamic Programming
 + cell[i,j] optimal score to get to (i,j)
 + cell[i,j] calculated just once!
 + cell[i,j] used to calculate cell[i+1,j] cell[i,j+1], cell[i+1,j+1]
 + Not just 3 times as fast but changing it from 3^n to n^2