Overview

⇒ Chapter 2 Section 2: Analyzing Algorithms
• Chapter 3: Growth of Functions
• Chapter 12: Binary Search Trees
How fast is an algorithm?

• Important part of designing and analyzing an algorithm
 - its efficiency: how long does it take

• How do we time how long an algorithm takes?
 - Want to do this abstractly, so don’t worry about underlying architecture
 - e.g., analysis of a sort algorithm should be predictive of its performance
 on a cell phone, mac, or pc
Random-Access Machine (RAM)

• Assume a random-access machine (RAM)
 - No concurrent operations (one instruction executed after another)
 - any memory location can be accessed in the same amount of time

• What is the instruction set?
 - Typical of what are found in real computers
 + Adding, multiplying, storing, loading values
 + Conditionals, subroutine calls and returns
 + Actions that can be done in a constant amount of time
 - Don’t include:
 - sort: Not typically found in instructions, does not take constant time
 - Dictionary lookups (associate arrays), not typically found in instructions
 - Exponentiation?
 - Looping constructs?
Data in RAM model

- Integers and floats, but of a fixed sized
- Data should be of fixed size as well
- Don’t model memory hierarchy: caches, virtual memory, paging
Running Time

• Different instructions take different lengths
 - This difference will be drowned out when there are loops, recursion
 - There is a maximum amount of time, regardless of what the data is
 + Even in an if statement, with multiple conditions, there is a maximum time to execute it
 + If there is a subroutine call in the expression, that must be accounted for separately
 - Just assume its time is ‘1’
Size of Input

- Many algorithms work on input data, which can vary in size
 - Sorting a list
 - Parsing a sentence
 - Training a machine learning algorithm on data

- For many algorithms, effect of input size can be huge
 - Size of input usually determines size of loops, or depth of recursion
 - So determine running time with respect to size of input, \(n \)

- Different ways of measuring input size:
 - For sorting an array, size of array
 - For multiplying two numbers, number of bits
 - For a graph, number of nodes and edges
Running Time can Depend on Data

Insertion-Sort(A)

1. for \(j = 2 \) to \(A.length \)
2. \(key = A[j] \)
3. // Insert \(A[j] \) into the sorted sequence \(A[1 \ldots j - 1] \).
4. \(i = j - 1 \)
5. while \(i > 0 \) and \(A[i] > key \)
7. \(i = i - 1 \)
8. \(A[i + 1] = key \)

- \(t_j \): number of times while loop test in line 5 is executed for value of \(j \)
 - If input is sorted, \(t_j \) is 1. If input is in reverse order, \(t_j = j \)
 - On average, will need to go halfway back in the list \(t_j = j/2 \)
- Why is the while and for statements given a time one greater?

\[\begin{array}{ll}
\text{cost} & \text{times} \\
\hline
\text{1.} & c_1 \ n \\
\text{2.} & c_2 \ n - 1 \\
\text{3.} & 0 \ n - 1 \\
\text{4.} & c_4 \ n - 1 \\
\text{5.} & c_5 \ \sum_{j=2}^{n} t_j \\
\text{6.} & c_6 \ \sum_{j=2}^{n} (t_j - 1) \\
\text{7.} & c_7 \ \sum_{j=2}^{n} (t_j - 1) \\
\text{8.} & c_8 \ n - 1 \\
\end{array} \]
Worst-case and Average-case Analysis

• Can look at average case or worst-case performance

• Textbook emphasizes worse case running time:
 - Gives an upper bound for any input
 - Worst case might occur fairly often
 + Searching a database and data is not present
 - Average case is often roughly as bad as the worse case
Order of Growth

• Quantify the running time as the input size grows
 - Say worst case running time is $an^2 + bn + c$; where a, b, c are constants
 - Interested in what happens as n increases
 + First term dominates!
 + Other two terms become noise
 + Can even ignore constant a
 + Since not effecting the rate of growth

• Worst case running time for insertion sort: $\Theta(n^2)$
Overview

• Chapter 2 Section 2: Analyzing Algorithms
⇒ Chapter 3: Growth of Functions
• Chapter 12: Binary Search Trees
• Running time versus size of data using asymptotic analysis
 - Focus on what happens to a function as \(n \) gets bigger and bigger
 - Function can represent anything: worst case running time of algorithm, or how much space it needs
 - Example: \(an^2 + bn + c \)
Theta Notation

- For $f(n)$
 - Is there a function $g(n)$
 - Constants c_1, c_2, n_0
 - $c_1 g(n) \leq f(n) \leq c_2 g(n)$
 + for $n \geq n_0$
 - Then $f(n) = \Theta(g(n))$

\[f(n) = \Theta(g(n)) \]
More formally

\[\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \]

- \(\Theta(g(n)) \) is a set of functions that \(g(n) \) can characterize
 - Should write \(f(n) \in \Theta(g(n)) \)
- \(g(n) \) characterizes them for any \(n \) greater than some \(n_0 \)
 - Not interested in small values of \(n \)
- \(g(n) \) characterizes them within constant bounds
- \(c_1, c_2, n_0 \) can depend on the \(f \)
- We say \(g(n) \) is an asymptotically **tight** bound for \(f(n) \)
Example

• Show $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

• Determine $c_1, c_2, n_o > 0$ s.t. that $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for $n \geq n_o$
 - Dividing by n^2 yields: $c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$
 - LH inequality: to make $c_1 > 0$, set $n \geq 7$ and so set $c_1 = \frac{1}{14}$
 - RH inequality: holds for any $n \geq 1$ with $c_2 = \frac{1}{2}$

• We can prove it is $\Theta(3n^2)$ or $\Theta(n^2 + 2n)$
 - Want the simplest form for $\Theta(g(n))$

• Constant time algorithms: $\Theta(n^0)$, which can be written as $\Theta(1)$
Big O

\[O(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ s.t. } 0 \leq f(n) \leq c g(n) \text{ for all } n \geq n_0 \} \]

- Just **upper** bound, not as strong as \(\Theta \), which is a tight bound:
 - In fact, \(\Theta(g(n)) \subseteq O(g(n)) \)
 - \(2n^2 = O(n^2) \), but also \(2n^2 = O(n^3) \)
 - Can easily assess \(O \) by looking at nesting of loops

© P. Heeman, 2017 (a) 15 of 23 (b) CS550 Class 03: Chapter 3: Growth of Functions (c)
More on Big O

• For Θ, needed to be clear that it was worst case time (or average time, or best time), since might have different bounds

• Since Big O is just an upper bound, when we use it to upper bound worst-case, it is upper bounding algorithm for any data
 - A bit of an abuse of terminology: each different data of input size n might have a different function for its running time
 - But all of the functions can be bounded above by $O(g(n))$
 - Can say running time (no modifier) of algorithm is $O(g(n))$
Omega

Ω(g(n)) = \{ f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ s.t. } \\
0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \\

Theorem: 3.1

For any two functions \(f(n) \) and \(g(n) \), we have \(f(n) = \Theta(g(n)) \) \iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)

• Same comments about \(O \) apply:
 - Lower bound can be specified regardless of data
 - Running time is \(O(n^2) \) and \(\Omega(n) \)
 - Worst case running time is \(\Theta(n^2) \), best case \(\Theta(n) \)
Overview

• Chapter 2 Section 2: Analyzing Algorithms
• Chapter 3: Growth of Functions
⇒ Chapter 12: Binary Search Trees
def InOrderWalk(self):
 if self.left is not None:
 self.left.InOrderWalk()
 print self.key
 if self.right is not None:
 self.right.InOrderWalk()

Theorem 12.1
If x is the root of a tree with n nodes, then $\text{InorderTreeWalk}(x)$
takes $\Theta(n)$ time.

• Let $T(n)$ denote time taken by InorderTreeWalk when called on
tree with n nodes

• Lower bound:
 - Since it must visit all nodes of the tree, $T(n) = \Omega(n)$
Upper Bound

• Prove by induction that $T(n) = O(n)$
 (textbook refers to this as substitution method).
 - Need more exact formula of its time than just $O(n)$. Let’s guess its time
• When called on a leaf, takes constant time $T(1) = c$
 for some constant $c > 0$
• How much time will it take when it is not a leaf
 - including time spent on initiating recursive call
 - excluding time spent in the recursive call
 - Will be a constant amount of time, say d and $d \geq c$
When called on a tree with n nodes
- It will split the tree into two parts:
 + right tree k nodes, $0 \leq k \leq n - 1$ (might be an empty subtree)
 + left tree $n - k - 1$ nodes
- $T(n) \leq T(k) + T(n - k - 1) + d$

Assume $T(n) \leq dn$
- Holds for $T(1)$
- Assume true for $1 \leq j < n$, prove true for n

\[
T(n) \leq T(k) + T(n - k - 1) + d \leq dk + d(n - k - 1) + d \leq dn
\]
def Search(self, k):
 if k == self.key:
 return self
 if k < self.key and self.left is not None:
 return self.left.Search(k)
 if k > self.key and self.right is not None:
 return self.right.Search(k)
 return None

Theorem 12.2:
Search runs in $O(h)$ time on a binary tree of height h

- What is the lower bound?
 - $\Omega(1)$
 - So it does not have a Θ
def Insert(self, z):
 y = None
 x = self.root
 while x is not None:
 y = x
 if z.key < x.key:
 x = x.left
 else:
 x = x.right
 z.p = y
 if y is None:
 self.root = z
 elif z.key < y.key:
 y.left = z
 else:
 y.right = z

Time $O(h)$