String Matching (Chapter 32)

- Text is an array $T[1..n]$, pattern is an array $P[1..m]$, and $m \leq n$.
- Elements of P and T are characters from alphabet Σ.
- We want to find where pattern P occurs in text T.
- Find all valid shifts with which a pattern P occurs in text T.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Preprocessing Time</th>
<th>Matching Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Rabin-Karp</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Finite automaton</td>
<td>$O(m\cdot</td>
<td>\Sigma</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Differing Approaches:

• Brute-force algorithm
•

Running Time
Prefix and Suffix

Prefix:
For any strings \(x \) and \(y \) and any character \(a \), if \(x \sqsubseteq y \) then \(xa \sqsubseteq y \).

Suffix:
For any strings \(x \) and \(y \) and any character \(a \), if \(x \sqsubseteq y \) then \(ya \sqsubseteq x \).

Examples:
- \(ab \, \sqsubseteq \, abcca \)
- \(abcca \, \sqsubseteq \, abcba \)
- \(cca \, \sqsubseteq \, abcca \)
- \(\epsilon \, \sqsubseteq \, abcba \)

• For any strings \(x \) and \(y \) and any character \(a \), if \(x \, \sqsubseteq \, y \) then \(xa \, \sqsubseteq \, ya \).

• Reflexive?
• Symmetric?
• Transitive?

Notation and Terminology

Strings:
- \(\Sigma \) set of symbols/characters
- \(\Sigma^* \) set of all finite length strings formed from characters in \(\Sigma \)
- Zero-length string \(\epsilon \) is in \(\Sigma^* \)
- Length of string \(x \) denoted by \(|x| \)
- Set of all finite-length strings formed from characters in \(\Sigma \)
- Zero-length string is in \(\Sigma^* \)
- Set of symbols/characters
Comparing Strings

Comparing two equal-length strings
- Might write this as $x = y$, but does not take constant time
- Say that z is longest prefix shared between x and y ($z ≡ x$ and $z ≡ y$)
- Recall where this as $x = y$, but does not take constant time

Lemma 32.1: Overlapping-suffix lemma

Suppose there are x, y, and z are strings such that $x ≡ z$ and $y ≡ z$.

Lemma 32.1: Overlapping-suffix lemma
Naive String-Matching Algorithm

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- Worst-case: text of length \(n \), pattern of length \(m \), must do \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.

- Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \). This entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \).

- Running time is \(O(nm) \) operations.

- No preprocessing, so running time is its matching time.

- Running time \(O(nm) \) operations.
Overview

1. Naive String Matching
2. Rabin-Karp Algorithm
3. String Matching with Finite Automata

Questions from Textbook

32.1-2 Suppose that all characters in the pattern \(P \) are different. Show how to accelerate Naive-String-Matcher to run in time \(O(n) \), and analyze the running time of your algorithm.

32.1-4 Suppose we allow the pattern \(P \) to contain occurrences of a gap character ⋄ that can match any string of characters (even one of zero length). For example, ⋄ba ⋄ c occurs in ab ⋄ ba ⋄ cbacabacabas. Give a polynomial-time algorithm to determine whether such a pattern occurs in a given text \(T \), and analyze the running time of your algorithm.
Computing and d's

\begin{align*}
[p]\cdot L + 01((p - [p]L) + \cdots + 01([p]_L + 01([p]_L)\cdots)) = 0 & \cdot \\
\text{Similarly, we can compute } 01 & \cdot \\
[p]\cdot d + 01((p - [p]d) + \cdots + 01([p]_d + 01([p]_d)\cdots)) = d & \cdot \\
\text{Can compute in time } d & \cdot \\
\end{align*}

Rabin-Karp Algorithm

- Makes use of elementary number theoretic notions
- Based on certain assumptions: average-case is better
- Matching time: worst-case $\Theta(m)$ preprocessor time

\begin{align*}
\text{Let } I & \cdot \\
\text{For a text } T & \cdot \\
\text{Given a pattern } P & \cdot \\
\text{Can view a length string as a } d \cdot \\
\text{Assume each character is a digit in base } & \cdot \\
\text{Assume } n \cdot \\
\text{Assume each character is a decimal digit } & \cdot \\
\text{Use } q & \cdot \\
\text{Compute } & \cdot \\
\text{Multiply } & \cdot \\
\text{Repeat for } & \cdot \\
\text{subject to } & \cdot \\
\text{Based on certain assumptions: average-case is better } & \cdot \\
\text{Matching time: worst-case } & \cdot \\
\text{Use } (w(1 + w - w)) & \cdot \\
\text{Preprocessor time } & \cdot \\
\end{align*}
Doing Comparison in Constant Time

• Compute \(p \) and \(t_s \) in mod \(q \)

• Old way of computing \(t_s \):
 \[
 t_s + 1 = 10(t_s - 10m - 1) + T(s + m + 1) \mod q
 \]
 Takes time \(O(m) \) due to multiplication of \(10^{m-1} \) and \(T(s + m + 1) \)

• Facts about mod:
 \[
 (x + y) \mod q = (x \mod q + y \mod q) \mod q
 \]
 \[
 xy \mod q = (x + \cdots + x) \mod q = (x \mod q) \cdot (y \mod q)
 \]

• New way:
 \[
 t_s' + 1 = 10(t_s' - hT(s + 1)) + T(s + m + 1) \mod q
 \]
 \(h = 10^{m-1} \mod q \)
 Now computation of \(t_s \) done in size \(q \cdot 10 \) not \(m \)

• Pick \(q \) so that \(q \cdot 10 \) fits into a computer word and \(q \) is prime
 \(q \) prime: helps make \(b + p \) terms make \(b \) depend on whole substring

Computation

\(p \mod [1 + u + s]L + ([1 + s]L - s)01 = 1 + s \)

\(b \mod (x + \cdots + x) = b \mod (b + x) \)

Old way of computing:

• \(t_s \) can be arbitrarily long (size \(m \) in time \(O(m) \))

Preprocessing: compute \(d \mod q \)

But \(s \) can be arbitrarily long (size \(m \) in time \(O(m) \))

(\(m \mod q \))
\[
|z| = p \text{ where } p
\]

\[
b \mod (\lceil \frac{1 + w + s}{L} \rceil + \lceil \frac{|1 + s|}{L} \rceil \cdot p) = \frac{t + \gamma}{w - u > s}
\]

\[
s \text{ start a match with shift,}\]

\[
\lceil \frac{1}{w + s} \rceil + \lceil \frac{1}{w + s} \rceil = \lceil \frac{|1 + s|}{d} \rceil \mod q = \gamma
\]

\[
\text{ matching} \quad \frac{w - u}{\delta} = s \quad \text{get} \quad b \mod (\lceil \frac{1}{d} \rceil + \gamma p) = \eta
\]

\[
b \mod (\lceil \frac{1}{d} \rceil d + dp) = d
\]

\[
\text{ preprocessing} \quad \frac{w}{\delta} = i \quad \text{get} \quad 0 = \phi
\]

\[
0 = \delta
\]

\[
b \mod (\lceil \frac{1}{d} \rceil + \phi p) = \psi
\]

\[
\lceil \frac{1}{d} \rceil + \gamma i \mod d = u
\]

\[
\frac{b \cdot p \cdot d \cdot \phi}{\eta \cdot \psi} \rceil
\]

\section*{Code}

\section*{Spurious Hits}

- Hopefully spurious hits do not happen too often.
- The number of checks will take time.
- \(\gamma = d \) if there need to check. If \(\gamma = d \) anymore, then need to check all possibilities.
- But not all the way around.
- \(b \mod \gamma = b \mod d \iff \gamma = d \) - Spurious Hits.
String Matching with Finite Automata

- Faster yet: constant time per text character

Overview
- Naive String-Matching
- Rabin-Karp Algorithm

Finite Automaton
- \(Q \) is a finite set of states
- \(q_0 \in Q \) is the start state
- \(A \subseteq Q \) is a set of accepting states
- \(\Sigma \) is a finite input alphabet
- \(\delta : Q \times \Sigma \rightarrow Q \) is the transition function
String-Matching Automata

- For any pattern P, it is possible to construct a FA.
 - FA is based on the pattern.
 - Transition from any state to its successor one.
 - FA monitors how much of pattern seen in processing text up to that point.
 - FA is in an accepting state whenever the pattern is fully seen (at end of input).
 - Other states correspond to all pattern characters seen so far.
 - A state for each successive character in pattern seen so far.
 - Start point: seen nothing of pattern.
 - Short point: seen nothing of pattern.
 - For any pattern P, if possible to construct a FA.

Accepting Strings

- FA starts in state q_0.
- Reads characters of input string one at a time.
- If FA is in state b and reads character a,
 - Moves from state b to state $g(a,b)$ (transition).
- FA is based on the input.
- ϕ induces an initial-state function $\phi : \Sigma \to \Sigma^*$,
 - For $a \in \Sigma$ and $P \in \Sigma^*$,
 - $\phi(\epsilon) = q_0$.
 - $\phi(a) = (\phi(a) \phi)$.

- Accidental Stings
 - ϕ induces a final-state function $\phi \in \Sigma^*$,
 - Otherwise if has rejected the string read so far.

- Whenever FA is in $b \in \Sigma^*$, it has accepted string read so far.

- Reads characters of input string one at a time.
 - FA starts in state q_0.
Some More Notation

Find all shifts \(s \) in range \(0 \leq s \leq s \) such that

- String matching problem can be written as:

Similarly for text \(T \), denote the first \(k \) characters by \(T_k \).

- So \(P = \epsilon \) and \(P^m = P \).

- For prefix \(P^{m-1} \), denote the first \(k \) characters as \(P_k \).

Example: \(P = ababaca \)

```
 0 1 2 3 4 5 6 7
a b a b a c a
```

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>8</td>
</tr>
</tbody>
</table>

```

Example: \( P = ababaca \)

```
 0 1 2 3 4 5 6 7 8 9 10 11
a b a b a b a c a b a
```

<table>
<thead>
<tr>
<th>State</th>
<th>Input</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>b</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>a</td>
<td>12</td>
</tr>
</tbody>
</table>

Example: \( P = ababaca \)
Defining the String Matching Automaton

- **State set** $Q$ is \{0, 1, ..., m\}.
- **Start state** $q_0$ is 0. State $m$ is only accepting state.
- **Transition function** $\delta$ is $\delta(q, a) = \sigma(Pq^a)$.
- Makes sense!
- We will be in the state that corresponds to the longest match of the prefix of $P$ with the amount of string we have processed so far.
- But does not tell us how to build the transition table.

Remember $\phi(w)$? Final state function.
- Outputs state that FA is in after processing $w$.
- Our definition of $\delta$ gives us $\phi(T_k) = \sigma(T_k)$.
- Just saying that the state that FA is in will match how much we are matching.

• Suffix Function

- FA must track prefixes of $P$ that are a suffix of the text so far.
- If longest suffix does not work, remember next longest one.
- If longest suffix is $\epsilon$, then it is there if $x\sqsubseteq y$.

**Suffix Function**
- $\max y = (x)\omega$.
- Implications of $\omega$.
- Example: $P = ab\omega c a a c a a$. Well defined since empty string $\epsilon$ is a suffix of every string.
- $\{x \sqsubseteq y : y\max = (x)\omega\}$.
- Suffix function corresponding to $P$ that is also a suffix of $x$.
- Length of the longest prefix of $P$ that is also a suffix of $x$.
- $\{m \sqsubseteq \}$.
Reading the Next Character

- If FA is in state $q$ at $i$th character of $T$ - $P_q$ is longest prefix of $P$ that is suffix of $T_i$
- FA then reads the next character $T[i + 1]$

Why is $\sigma(T[i]) = \sigma(P_q)$ important?

- $(v^b_L) \phi = (v^b_L) \phi$
- $v^b_P$ is longest suffix of $v^b_P$
- Everything that is important about $L$ (in terms of matching)
- $v^b_P$ is the longest prefix of $v^b_P$ that is a suffix of $L$
- $v^b_P$ is the longest prefix of $v^b_P$ that is a suffix of $L$
- $\sigma = [1 + i]_L$
- $P_A$ is in state $b$ if the character of $L$
**Code: Preprocessing Step**

\[
\text{COMPUTE-TRANSITION-FUNCTION}(P, \Sigma)
\]

1. \( \gamma = (p \cdot b)q \)
2. \( \forall \delta \in \Sigma \)
3. \( 1 - \gamma = \gamma \)
4. \( \exists \) for each character \( a \in \Sigma \)
5. \( 0 \) for \( m = 1 \)
6. \( \text{return} \)
7. \( \text{match occurs with shift } l - \text{m} \)

**Running time:** \( O(|\Sigma|^m) \)

- Can actually do this in \( O(|\Sigma|\text{m}) \)

**Code: Matcher**

\[
\text{FINITE-AUTOMATON-MATCHER}(T, Q, \Sigma, \delta, q_0, F)
\]

1. \( n = T: \) length \( \Sigma \)
2. \( q = 0 \) for \( i = 1 \) to \( n \)
3. \( q = \text{match occurs with shift } l \)
4. \( \text{return} \) if \( q = m \)
5. \( \text{print} \) "Pattern occurs with shift \\
\text{with}\\
\text{shift } l - \text{m} \)

**Matcher runs in \( \Theta(n) \) time**

- Assuming \( \delta \) is just a table lookup