String Matching (Chapter 32)

- Text is an array T[1..n], pattern is an array P[1..m] and m ≤ n
 - Elements of P and T are characters from alphabet Σ
 - Want to find where P occurs in T
 + At what shifts
 - If P occurs with shift s in text T, we call s a valid shift, otherwise s is an invalid shift

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Preprocessing time</th>
<th>Matching time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>0</td>
<td>O((n − m + 1)m)</td>
</tr>
<tr>
<td>Rabin-Karp</td>
<td>Θ(m)</td>
<td>O((n − m + 1)m)</td>
</tr>
<tr>
<td>Finite automaton</td>
<td>O(m</td>
<td>Σ</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt</td>
<td>Θ(m)</td>
<td>Θ(n)</td>
</tr>
</tbody>
</table>

- n and m are not constants, as they can vary in size
Notation and Terminology

• Strings
 - Σ set of symbols/characters
 - Σ^* set of all finite length strings formed from characters in Σ
 - Zero-length string ϵ is in Σ^*
 - Length of string x denoted by $|x|$
 - Concatenation of strings x and y denoted as xy

• What does it mean to say that $x = y$?
 $x \in \Sigma^*$. So $x = x_1...x_n$ such that $n \geq 0$ and each $x_i \in \Sigma$
 $y \in \Sigma^*$. So $y = y_1...y_m$ such that $m \geq 0$ and each $y_i \in \Sigma$
 - We say that $x = y$ if $n = m$ and $x_i = y_i$ for $i \leq n$

Prefix and Suffix

Prefix:
w is prefix of x, denoted $w \sqsubseteq x$, if there exists $y \in \Sigma^*$ such that $wy = x$

Suffix:
w is suffix of x, denoted $w \sqsupseteq x$ if there exists $y \in \Sigma^*$ such that $yw = x$

• Examples
 ab \sqsubseteq abca
 cca \sqsubseteq abca
 ϵ \sqsubseteq abca

• For any strings x and y and any character a, if $x \sqsupseteq y$ then $x a \sqsubseteq ya$

• Suffix and Prefix:
 - reflexive?
 - symmetric?
 - transitive?
Comparing Strings

- Comparing two equal-length strings
 - Might write this as $x == y$, but does not take constant time
 - Say that z is longest prefix shared between x and y ($z \sqsubseteq x$ and $z \sqsubseteq y$)
 - If $|z| = t$, will take $\Theta(t + 1)$
 + Need to compare t characters plus one more to find that strings are not equal

Lemma 32.1

Lemma 32.1: Overlapping-suffix lemma
Suppose that x, y, and z are strings such that $x \sqsupseteq z$ and $y \sqsupseteq z$.
If $|x| \leq |y|$, then $x \sqsupseteq y$.
If $|x| \geq |y|$, then $y \sqsupseteq x$.
If $|x| = |y|$ then $x = y$.

Proof:
(hand-waving)
Overview

⇒ Naive String-Matching
• Rabin-Karp Algorithm
• String Matching with Finite Automata

Naive String-Matching Algorithm

NAIVE-STRING-MATCHER *(T, P)*

1. \(n = T\.length \)
2. \(m = P\.length \)
3. for \(s = 0 \) to \(n - m \)
4. \(\text{if } P[1..m] == T[s+1..s+m] \)
5. print “Pattern occurs with shift” \(s \)

• Running time \(O((n - m + 1)m) \)
 - Worst-case: text \(a^n \), pattern \(a^m \), must do \(O((n - m - 1)m) \) operations
 - No preprocessing, so running time is its matching time
• Naive: entirely ignores information gained about the text for one value of \(s \) when it considers other values of \(s \)
 - e.g., if \(P = aaab \) and \(s=0 \) is valid, then shifts of 1,2,3 are not valid
Questions from Textbook

32.1-2 Suppose that all characters in the pattern \(P \) are different. Show how to accelerate Naive-String-Matcher to run in time \(O(n) \) on an \(n \)-character text \(T \).

32.1-4 Suppose we allow the pattern \(P \) to contain occurrences of a gap character \(\diamond \) that can match an arbitrary string of characters (even one of zero length). For example \(ab \diamond ba \diamond c \) occurs matches two ways in \(cabcbacbacabas \). Give a polynomial-time algorithm to determine whether such a pattern occurs in a given text \(T \), and analyze the running time of your algorithm.

Overview

- Naive String-Matching
 \(\Rightarrow \) Rabin-Karp Algorithm
- String Matching with Finite Automata
Rabin-Karp Algorithm

- Uses $\Theta(m)$ preprocessing time
- Matching time: worst-case $\Theta((n - m + 1)m)$
 - Based on certain assumptions: average-case is better
- Makes use of elementary numeric notions
 - $a \mod c = b \mod c$
- Assume $\Sigma = \{0, 1, 2, ..., 9\}$: each char is a decimal digit
 - In general case, assume each char is a digit in base d where $d = |\Sigma|$
 - Can view a k length string as a k length number
 - Given a pattern $P[1..m]$, let p be its corresponding decimal value
 - For a text $T[1..n]$, let t_s denote the decimal value of the length m substring $T[s+1..s+m]$ for $s = 0, 1, ..., n-m$

Computing p and t_s

- For example, assume $|\Sigma| = 10$
- Can compute p in time $\Theta(m)$ using Horner’s rule
 - $p = \ldots((P[1]10 + P[2])10 + P[3])10 + \ldots + P[m-1])10 + P[m]$
- Similarly, we can compute t_0 from $T[1..m]$ in time $\Theta(m)$
 - $t_0 = \ldots((T[1]10 + T[2])10 + T[3])10 + \ldots + T[m-1])10 + T[m]$
- All following t_s can be computed in $\Theta(1)$ time
 - t_s, based on $T[s + 1]$ down to $T[s + m]$
 - t_{s+1}: subtract off highest digit $T[s + 1] \cdot 10^{m-1}$
 multiply rest by 10
 add next digit $T[s + m + 1]$
Computation

- **Preprocessing:**
 - compute p: $\Theta(m)$
 - compute 10^{m-1} (needed for computing t_s): $\Theta(m)$

- **Compute all** $t_0, t_1, \ldots, t_{n-m}$ in time $\Theta(m + (n - m))$

- **But** t_s can be arbitrarily long (size m)
 - Computing t_{s+1} needs $\Theta(m)$ time, not $\Theta(1)$
 - Comparing p and t_s needs $\Theta(m)$ time, not $\Theta(1)$

Doing Comparison in Constant Time

- **Compute** p and t_s in mod q

- **Old way** of computing t_s:
 $$t_{s+1} = 10(t_s - 10^{m-1}T[s + 1]) + T[s + m + 1]$$
 - Takes time $O(m)$ due to multiplication of 10^{m-1} and $T[s + 1]$

- **Facts** about mod:
 - $(x + y) \mod q = ((x \mod q) + (y \mod q)) \mod q$
 - $xy \mod q = (x + \ldots + x) \mod q$
 - $((x \mod q) \ast y) \mod q$

- **New way:**
 $$t_{s+1}' = 10(t_s' - hT[s + 1]) + T[s + m + 1] \mod q$$
 - $h = 10^{m-1} \mod q$
 - Now computation of t_s done in size $q \ast 10$ not m
 - Pick q so that $q \ast 10$ fits into a computer word and q is prime
 + q prime: helps make t_s depend on whole substring
Spurious Hits

- Spurious Hits
 - \(p = t_s \Rightarrow p \mod q = t_s \mod q \)
 - But not the other way around
 - Testing \(p' = t'_s \) will give false positives
 - Anytime \(p' = t'_s \) then need to check if \(p = t_s \)
 + This further check will take \(O(m) \) time
 - Hopefully spurious hits do not happen too often
 + Want \(q \) as large as possible

Rabin-Karp-Matcher(\(T, P, d, q \))

```plaintext
Rabin-Karp-Matcher(T, P, d, q)
1  n = T.length
2  m = P.length
3  h = d^{m-1} \mod q
4  p = 0
5  t_0 = 0
6  for i = 1 to m  // preprocessing
7      p = (dp + P[i]) \mod q
8      t_0 = (dt_0 + T[i]) \mod q
9  for s = 0 to n - m  // matching
10     if p == t_s
11        if P[1..m] == T[s + 1..s + m]
12           print "Pattern occurs with shift s"
13     if s < n - m
14        t_{s+1} = (d(t_s - T[s + 1]h) + T[s + m + 1]) \mod q
```

Doing this in base \(d \) where \(d = |\Sigma| \)
Overview

• Naive String-Matching
• Rabin-Karp Algorithm
⇒ String Matching with Finite Automata

String Matching with Finite Automata

• Faster yet: constant time per text character $O(n)$
 - Process text with a finite automata

<table>
<thead>
<tr>
<th>state</th>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- 5 tuple
 + Q is a finite set of states
 + $q_0 \in Q$ is the start state
 + $A \subseteq Q$ is a set of accepting states
 + Σ is a finite input alphabet
 + $\delta : Q \times \Sigma \rightarrow Q$ is transition function
String-Matching Automata

• For any pattern P, it is possible to construct a FA
 - FA is based on the P
 - FA processes text
 - FA is in an accepting state whenever the pattern is fully seen (at end of pattern in the text)
 - FA monitors how much of pattern seen in processing text up to that point
 + Start point: seen nothing of pattern
 + A state for each successive character in pattern seen so far
 + State corresponding to all pattern characters seen is accept state
 + Transition from each state to its successive one
 + Back arcs when next character is not next in pattern
 + Need not be back to initial state since might be a smaller prefix of pattern that also matches so far
 - Example: $P = ababaca$

Accepting String

• Accepting Strings
 - FA starts in state q_0
 - Reads characters of input string one at a time
 - If FA is in state q and reads character a
 moves from state state q to $\delta(q, a)$ (transitions)
 - Whenever FA is in $q \in A$, it has accepted string read so far
 - Otherwise it has rejected the string read so far
• FA M induces a final-state function ϕ
 - $\phi(w)$ maps to state M is in at the end of reading w
 - Recursive Definition
 + $\phi(\epsilon) = q_0$
 + $\phi(wa) = \delta(\phi(w), a)$ for $w \in \Sigma^*, a \in \Sigma$
Some More Notation

• For prefix $P[1..m]$, denote the first k characters as P_k
 - So $P_0 = \epsilon$, and $P_m = P = P[1..m]$

• Similarly for text T, denote the first k characters by T_k

• String matching problem can be written as:
 Find all shifts s in range $0 \leq s \leq n-m$ such that $P \sqsupseteq T_{s+m}$
Defining the String Matching Automaton

- State set Q is $\{0, 1, ..., m\}$
- Start state q_0 is 0. State m is only accepting state
- Transition function δ is $\delta(q, a) = \sigma(P_q a)$
 - Makes sense!
 - We will be in the state that corresponds to the longest match of the prefix of P with the suffix of the amount of string we have processed so far
 - But how do we prove this?
- Remember $\phi(w)$? Final state function
 - Outputs state that FA is in after processing w
 - Our definition of δ gives us $\phi(T_k) = \sigma(T_k)$
 - Just saying that the state that FA is in will match how much we are matching

Suffix Function

- FA must track prefixes of P that are a suffix of the text so far
 - If the longest suffix does not work, pursue next longest one
- Suffix function corresponding to P $\sigma : \Sigma^* \rightarrow \{0, 1, ..., m\}$
 - Length of the longest prefix of P that is also a suffix of x
 - $\sigma(x) = \max\{k : P_k \sqsubseteq x\}$
 - Well defined since empty string $P_0 = \epsilon$ is a suffix of every string
 - Example: $P = ab$. $\sigma(cca\epsilon) = \text{??}$. $\sigma(ccab) = \text{??}$
- Implications of σ
 - If P is of length m, $\sigma(x) = m$ iff $P \sqsubseteq x$
 - For P, if $x \sqsubseteq y$ then $\sigma(x) \leq \sigma(y)$
Reading the Next Character

- If FA is in state \(q \) at \(i \)th character of \(T \)
 - \(P_q \) is longest prefix of \(P \) that is suffix of \(T_i \)
- FA then reads the next char \(T[i + 1] = a \)
 - Want to transition to state corresponding to longest prefix of \(P \) that is a suffix of \(T_i \) : \(\sigma(T_i a) \)
 - Since \(P_q \) is the longest prefix of \(P \) that is a suffix of \(T_i \) \(P_q \) captures everything that is important about \(T_i \) (in terms of matching)
 - Longest suffix of \(T_i a \) is also longest suffix of \(P_q a \)
 - So \(\sigma(T_i a) = \sigma(P_q a) \)
- Why is \(\sigma(T_i a) = \sigma(P_q a) \) important?
 - Means we can compute \(\sigma \) (and thus \(\delta \)) from just the all prefixes of the pattern and next possible characters

Example: \(P = \text{ababaca} \)

- Forward arcs capture next character matching
 - More and more of the prefix of \(P \) matches suffix of \(T_i \)
 - Example \(\delta(5, c) = 6 \)
- Backward arcs
 - When there is not a match
 - Example \(\delta(5, b) = 4 \)
 + Since in state 5, longest prefix of \(P \) that matches is \(P_5 = \text{abaha} \)
 + Next character is b. Longest prefix of \(P \) that matches \(P_5 b = \text{ababab} \) is 4
Code: Matcher

FINITE-AUTOMATON-MATCHER(T, δ, m)

1. \(n = T.\text{length} \)
2. \(q = 0 \)
3. for \(i = 1 \) to \(n \)
4. \(q = \delta(q, T[i]) \)
5. if \(q = m \)
6. print “Pattern occurs with shift” \(i - m \)

- Matcher runs in \(\Theta(n) \) time
 - Assuming \(\delta \) is just a table lookup

Code: Preprocessing Step

COMPUTE-TRANSITION-FUNCTION(P, \(\Sigma \))

1. \(m = P.\text{length} \)
2. for \(q = 0 \) to \(m \)
3. for each character \(a \in \Sigma \)
4. \(k = \min(m + 1, q + 2) \)
5. repeat
6. \(k = k - 1 \)
7. until \(P_k \subseteq P_q a \)
8. \(\delta(q, a) = k \)
9. return \(\delta \)

- Running time: \(O(m^3|\Sigma|) \)
 - Can actually do this in \(O(m|\Sigma|) \)