Adjacency Matrix

- Most of the algorithms in this chapter use adjacency matrix

\[W = (w_{ij}) \]

\[w_{ij} = \begin{cases}
0 & \text{if } i = j \\
\text{weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
\infty & \text{otherwise}
\end{cases} \]

- Output will be an \(n \times n \) array \(D = (d_{ij}) \)

\[d_{ij} \] will be shortest-path weight from \(i \) to \(j \)

- Allowing negative weights doesn't run into negative cycles

\(\frac{(f_p)}{\Pi} \) = \(D \) key array \(u \times u \times n \)

- Output will be a predecessor matrix \(\Pi = (\pi_{ij}) \)

\[\pi_{ij} = \text{nil if } i = j \text{ or not path from } i \text{ to } j \]

\[\text{otherwise } \pi_{ij} = \text{ predecessor of } j \text{ on some shortest path from } i \]

- Most of the algorithms in this chapter use adjacency matrix

All-Pairs Shortest Paths (Chapter 25)

- Weighted Directed Graph

- Could run a single-source shortest paths algorithm \(|A| \)

- Let's do better! Many applications depend on this

\[(A \oplus \lambda A)\Theta + \]

\[\text{All vertices } \Theta + \]

\[\text{Dijkstra's algorithm runs in } \Theta + \]

\[(\lambda A \oplus \lambda F)\Theta \]

\[\text{If graph has no negative cycles (like for route finding) } \]

\[(\lambda A)\Theta \]

\[\text{If graph has only negative cycles and edges } \]

\[\text{Could run a single-source shortest paths algorithm } \]

All-Pairs Shortest Paths (Chapter 25)
Directed graph, negative edges, but no negative cycles

Step 1 of dynamic programming:
- Characterize the optimal solution
- Can use these optimal subpaths over and over again!
- For any \(j > i \), we have \(d_{ij} \) is shortest path for \(i \) to \(j \).

For any \(j \), path \(\langle v_0, v_1, \ldots, v_{j-1}, v_j \rangle \) is shortest for \(v_0 \) to \(v_j \) (Lemma 24.1)

\(d_{ij} = d \) if \(d_{ij} < d \)
- Say \(d \) is shortest path from \(i \) to \(j \) and \(d \) is shortest path from \(i \) to \(a \)
- \(d \) is shortest path from \(i \) to \(j \) (Lemma 24.1)

- Can use these optimal subpaths over and over again!
- But how?
- For any \(i, j \) if we know that the last step goes from \(k \) to \(j \), overall path
- But is optimal path from \(i \) to \(k \) any simpler?
- It will have one less edge than path from \(i \) to \(j \)

\(d_{ij} \) is shortest path from \(i \) to \(j \)

\(\langle v_0, v_1, \ldots, v_{i-1}, v_i \rangle \) is shortest path for \(v_0 \) to \(v_i \) (Lemma 24.1)

\(d_{ij} \) is shortest path for \(v_0 \) to \(v_j \)

\(d_{ij} \) is shortest path for \(v_0 \) to \(v_k \) plus edge \((k, j) \)

\(d_{ij} \) is shortest path for \(v_0 \) to \(v_i \) plus edge \((k, j) \)

\(d_{ij} \) is shortest path for \(v_0 \) to \(v_j \) plus edge \((k, j) \)

Thus, if \(d_{ij} < d \), then \(d_{ij} \) is shortest path for \(i \) to \(j \).
Shortest Path Weights

- In each g_i, $g_i = g_i'$
- If graph has no negative weight cycles
 - If j is reachable from i, shortest path exists from i to j will have at most $n-1$ edges
 - $\delta(i, j) = l_{ij}(n-1)$ since we can just pad on w_{jj}
 - In fact $\delta(i, j) = l_{ij}(n) = l_{ij}(n+1) = \ldots$

\[\ldots (g_i') = (g_i) = (g_i') \]

Recursively Define Value of an Optimal Solution

- Consider shortest paths up to length m.
- $\ell(i, j)_{m}$ is 0 if $i = j$ and $\ell(i, j) = \infty$ if $i \neq j$.
- Be minimum weight of any path from i to j that contains at most m edges.
- $\ell(i, j)_{m} = \min \{ \ell(i, k)_{m-1} + w_{kj}, 1 \leq k \leq n \}$ since can just add on w_{jj} which is 0.
Computing Shortest-path Bottom-up

• Can view this as: ESP(...)ESP(ESP(W,W),W)...

\[(M) \]

\textbf{Return} \(L^{(1)} \)

\textbf{EXTEND-SHORTEST-PATHS} \((T) \) \((w) \)

1. Let \(L^{(w)} \) be a new \(u \times u \) matrix
2. For \(m \) \(1 \) to \(n \) - 1
3. \(M = (M)^{m-1} \)
4. \(M.' \)ROWS = \(u \) \(1 \)

.......

\textbf{Rest of Code}

\section*{Time complexity?}

\[(T) \]

\textbf{Return} \(L^{(1)} \)

\textbf{EXTEND-SHORTEST-PATHS} \((T) \) \((w) \)

1. Let \(L^{(w)} \) be a new \(u \times u \) matrix
2. For \(m \) \(1 \) to \(n \)
3. \(M = (M)^{m-1} \)
4. \(M.' \)ROWS = \(u \) \(1 \)

\section*{Computing Shortest-path Bottom-up
Overview

- Shortest Paths
- Floyd-Warshall Algorithm
- Shortest Paths and Matrix Multiplication

Example

- $L(1)$ is just W
- $L(2)$ is like W but for hops of at most length 2

\[
\begin{pmatrix}
0 & 6 & 8 & 2 & 3 \\
6 & 0 & 5 & 1 & 4 \\
8 & 5 & 0 & 4 & 3 \\
2 & 1 & 4 & 0 & 7 \\
3 & 4 & 3 & 7 & 0
\end{pmatrix}
= (\text{INIT})
\]

\[
\begin{pmatrix}
0 & 6 & 8 & 2 & 3 \\
6 & 0 & 5 & 1 & 4 \\
8 & 5 & 0 & 4 & 3 \\
2 & 1 & 4 & 0 & 7 \\
3 & 4 & 3 & 7 & 0
\end{pmatrix}
= (\text{INIT})
\]

\[
\begin{pmatrix}
0 & 6 & 8 & 2 & 3 \\
6 & 0 & 5 & 1 & 4 \\
8 & 5 & 0 & 4 & 3 \\
2 & 1 & 4 & 0 & 7 \\
3 & 4 & 3 & 7 & 0
\end{pmatrix}
= (\text{INIT})
\]

\[
\begin{pmatrix}
0 & 6 & 8 & 2 & 3 \\
6 & 0 & 5 & 1 & 4 \\
8 & 5 & 0 & 4 & 3 \\
2 & 1 & 4 & 0 & 7 \\
3 & 4 & 3 & 7 & 0
\end{pmatrix}
= (\text{INIT})
\]
• Overall time is $O(3n^2 \log n)$ steps.

Can compute $T^w(u,v)$ in $O(n^2)$ steps.

To compute $L(1)$, can call routine on $T^w(u,v)$ and $T^w(v,u)$.

To compute $L(4)$, can call routine on $T^w(u,v)$ and $T^w(v,u)$.

To compute $L(8)$, can call routine on $T^w(u,v)$ and $T^w(v,u)$.

Can compute $L(n-1)$ in $O(\sqrt{n} \log n)$ steps.

Overall time is $O(V^3 \log(V))$.

Towards a Faster Implementation

Shortest Paths is like Matrix Multiplication

EXTEND-SHORTEST-PATHS(L, W) = EXTENSION(L) + L

In fact, just as matrix \times is associative, so is EXTEND-SHORTEST-PATHS.

Pretty similar.

Pretty similar.

EXTEND-SHORTEST-PATHS(L, W) = EXTENSION(L) + L

In fact, just as matrix \times is associative, so is EXTEND-SHORTEST-PATHS.

Pretty similar.

Pretty similar.
Structure of a Shortest Path

Previously, characterized the optimal substructure for a shortest path from \(s \to u \to v \), consider paths of shorter and shorter lengths. Applied dynamic programming in bottom-up approach.
Recursive Solution

Let $d(k)_{ij}$ be the weight of a shortest path from i to j for which all intermediate vertices are in V_k

- $d(0)_{ij} = w_{ij}$ since cannot have any intermediate vertices

- Can at most have one edge: $\langle i, j \rangle$ if it is in E

- If no edge $\langle i, j \rangle$, $w_{ij} = \infty$

- $d(k)_{ij} = \min(d(k-1)_{ij}, d(k-1)_{ik} + d(k-1)_{kj})$

WOW!

Different Optimal Substructure Approach

- Say G has n vertices: $\{1, ..., n\}$

- Consider subset $\{1, ..., k\} = V_k$

- For any pair of vertices u, v in $\{1, ..., k\}$

- Consider paths whose intermediate vertices are in $\{1, ..., k\}$
Determining the Paths

- Need to keep track of the predecessors

\[\Pi(i) \] corresponds to \[D(i) \] for \(0 \leq i \leq n \)

- \(\pi(i) \) predecessor of \(j \) on shortest path from vertex \(i \) with all intermediate vertices in \(V_k \)

- \(\Pi(0) \) is ?

How do we modify code?

```c

FLOYD-WARSHALL

1

D:

2 n

for k from 1 to n

3 let D[k][i][j] be a new n x n matrix

4 for i from 1 to n

5 for j from 1 to n

6 d[k][i][j] = min

7 d[k][i][j] = \( \Pi(k) \) or \( d[k-1][i][j] \)

8 return D

```

Time complexity:

\[
\left((1 - \gamma)^p + (1 - \gamma)^p \cdot (1 - \gamma)^p \right) \text{ min } = (1 - \gamma)^p
\]

\[u \rightarrow 1 \]

For \(u \rightarrow 1 \)

For \(u \rightarrow 1 \) for a new matrix \(u \times u \)

M = \((D) \)

M = rows

FLOYD-WARSHALL(M)