All-Pairs Shortest Paths (Chapter 25)

• Weighted Directed Graph
• Could run a single-source shortest paths algorithm $|V|$ times
 - If graph has negative weight edges and cycles
 + Bellman-Ford algorithm runs in $\Theta(EV)$
 + All vertices $\Theta(EV^2)$. Dense graph: $\Theta(V^4)$
 - If graph has no negative edges (like for route finding)
 + Dijkstra’s algorithm runs in $\Theta(E \log V)$
 + All vertices $\Theta(EV \log V)$. Dense: $\Theta(V^3 \log V)$
• Let’s do better! Mapping applications depend on this!
Overview

⇒ Shortest Paths
• Shortest Paths and Matrix Multiplication
• Floyd-Warshall Algorithm

Adjacency Matrix

• Most of the algorithms in this chapter use adjacency matrix
 - Vertices numbered 1 to |V| (let n = |V|)
 - Matrix is $W = (w_{ij})$

 \[
 w_{ij} = \begin{cases}
 0 & \text{if } i = j \\
 \text{weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\
 \infty & \text{otherwise}
 \end{cases}
 \]

• Output will be a $n \times n$ array $D = (d_{ij})$
 - d_{ij} will be shortest-path weight from i to j
 - Allowing negative weight edges, but no negative cycles
• Also need a predecessor matrix $\Pi = (\pi_{ij})$
 - $\pi_{ij} =$ nil if $i = j$ or no path from i to j
 - otherwise, π_{ij} is predecessor of j on some shortest path from i
 - So row i are all of the predecessors for shortest paths from i
Dynamic Programming

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution in a bottom-up fashion
- Construct optimal solution from computed information

Optimal Substructure?

- Directed graph, negative edges, but no negative cycles
- Step 1 of dynamic programming
 - Characterize the optimal solution
- Say p is shortest path from u to v and $p = \langle v_0, v_1, ..., v_k \rangle$
 - for any j, path $\langle v_0, v_1, ..., v_j \rangle$ is shortest for v_0 to v_j (Lemma 24.1)
 - but also for $i < j$, we have $\langle v_i, v_{i+1}, ..., v_j \rangle$ is shortest path for v_i to v_j
 - Can use these optimal subpaths over and over again!
- But how?
 + For any i, j if we know that the last step goes from k to j, overall path is optimal path from i to k plus edge (k, j)
 + But is optimal path from i to k any simpler?
 + It will have one less edge than path from i to j
Recursively Define Value of an Optimal Solution

- Consider shortest paths up to length m
 - $l_{ij}^{(m)}$ be min weight of any path from i to j that contains at most m edges
 - $l_{ij}^{(0)}$ is 0 if $i = j$ and ∞ if $i \neq j$
 - $l_{ij}^{(m)} = \min(l_{ij}^{(m-1)} \cup \{l_{ik}^{(m-1)} + w_{kj}\})$
 - $l_{ij}^{(m-1)} = \min \{l_{ik}^{(m-1)} + w_{kj}\}$ since can just add on w_{jj} which is 0

* Let $L^{(m)}$ be the array with entries $l_{ij}^{(m)}$. Can write $L^{(m)} = (l_{ij}^{(m)})$
* What is $L^{(1)}$?

Shortest Path Weights

- If graph has no negative weight cycles
 - If j is reachable from i, shortest path exists from i to j will have at most $n-1$ edges
 - $\delta(i, j) = l_{ij}^{(n-1)}$ since we can just pad on w_{jj}
 - In fact $\delta(i, j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = ...$
Computing Shortest-path Bottom-up

- Start with $L^{(1)} = W$
 - Compute $L^{(2)}$, then $L^{(3)}$, then $L^{(4)}$...
 - Just need the previous one to compute the next one

EXTEND-SHORTEST-PATHS (L, W)

1. $n = L\.\text{rows}$
2. let $L' = (l'_ij)$ be a new $n \times n$ matrix
3. for $i = 1$ to n
4. for $j = 1$ to n
5. $l'_ij = \infty$
6. for $k = 1$ to n
7. $l'_ij = \min(l'_ij, l_{ik} + w_{kj})$
8. return L'

- Time complexity?

SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1. $n = W\.\text{rows}$
2. $L^{(1)} = W$
3. for $m = 2$ to $n - 1$
4. let $L^{(m)}$ be a new $n \times n$ matrix
5. $L^{(m)} = \text{EXTEND-SHORTEST-PATHS} (L^{(m-1)}, W)$
6. return $L^{(n-1)}$

- Can view this as: $\text{ESP}(..., \text{ESP}(\text{ESP}(W,W),W),...),W)$

Rest of Code
Overview

- Shortest Paths
 ⇒ Shortest Paths and Matrix Multiplication
- Floyd-Warshall Algorithm
Shortest Paths is like Matrix Multiplication

EXTEND-SHORTEST-PATHS(L, W)
1. \(n = L\.rows \)
2. let \(L' = (l'_{ij}) \) be a new \(n \times n \) matrix
3. for \(i = 1 \) to \(n \)
4. for \(j = 1 \) to \(n \)
5. for \(k = 1 \) to \(n \)
6. \(l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj}) \)
8. return \(L' \)

SQUARE-MATRIX-MULTIPLY(A, B)
1. \(n = A\.rows \)
2. let \(C \) be a new \(n \times n \) matrix
3. for \(i = 1 \) to \(n \)
4. for \(j = 1 \) to \(n \)
5. \(c_{ij} = 0 \)
6. for \(k = 1 \) to \(n \)
7. \(c_{ij} = c_{ij} + a_{ik} \cdot b_{kj} \)
8. return \(C \)

- Pretty similar
 - \(+ \Rightarrow \times \) and \(\min \Rightarrow + \)
 - Identity for \(\min \Rightarrow \) identify for \(+ \)
- In fact, just as matrix \(\times \) is associative, so is Extend-Shortest-Paths
 + \(L^{(1)} = \text{ESP}(\text{ESP}(W,W),W) = \text{ESP}(W,W,W) \)

Towards a Faster Implementation

- \(L^{(1)} \) is just \(W \)
- \(L^{(2)} \) is like \(W \) but for hops of at most length 2
- To compute \(L^{(4)} \), can call routine on \(L^{(2)} \) and \(L^{(2)} \)
- To compute \(L^{(8)} \), can call routine on \(L^{(4)} \) and \(L^{(4)} \)
- Can compute \(L^{(n-1)} \) in \(O([\log n]) \) steps
- Overall time is \(O(V^3 \log(V)) \)

* Is this impressive? Dijkstra's on all vertices also is \(O(V^3 \log(V)) \)
Overview

• Shortest Paths
• Shortest Paths and Matrix Multiplication
⇒ Floyd-Warshall Algorithm

Structure of a Shortest Path

• Previously, characterized the optimal substructure for a shortest path from $s \leftrightarrow v$ as $s \leftrightarrow u \rightarrow v$
 - Consider paths of shorter and shorter lengths
 - Applied dynamic programming in bottom-up approach
• Think of the binary back-pack problem
 - How did we formulate the subproblems?
Different Optimal Substructure Approach

- Say G has n vertices: $\{1, \ldots, n\}$
- Consider subset $\{1, \ldots, k\} = V_k$
- For any pair of vertices i, j
 - Consider paths whose intermediate vertices are in $\{1, \ldots, k\}$
 - Say p is a minimum weight path in that set
- Case 1: k is not an intermediate vertex in p
 - All intermediate vertices of p are in $\{1, \ldots, k - 1\}$
 - Shortest path from i to j with all intermediate vertices in V_{k-1} is a shortest path with all intermediate vertices in V_k
- Case 2: k is an intermediate vertex in p
 - We can assume that k just appears once in p
 - Can decompose p into $i \xrightarrow{p_1} k \xrightarrow{p_2} j$ where all intermediate vertices of p_1 and p_2 are in V_{k-1}

Recursive Solution

- Let $d_{ij}^{(k)}$ be the weight of a shortest path from i to j for which all intermediate vertices are in V_k
- $d_{ij}^{(0)} = w_{ij}$ since cannot have any intermediate vertices $V_0 = \emptyset$
 - Can at most have one edge: (i, j) if it is in E
 - If no edge (i, j), $w_{ij} = \infty$
- $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
 - WOW!
Determine the Paths

- Need to keep track of the predecessors
- $\Pi^{(i)}$ corresponds to $D^{(i)}$ for $0 \leq i \leq n$
 - $\pi^{(i)}_{ij}$ predecessor of j on shortest path from vertex i with all intermediate vertices in V_k
- $\pi^{(0)}_{ij} = ???$
- How do we modify code?

Code

FLOYD-WARSHALL(W)
1. $n = W.rows$
2. $D^{(0)} = W$
3. for $k = 1$ to n
4. let $D^{(k)} = (d^{(k)}_{ij})$ be a new $n \times n$ matrix
5. for $i = 1$ to n
6. for $j = 1$ to n
7. $d^{(k)}_{ij} = \min (d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj})$
8. return $D^{(n)}$

- Time complexity?