Overview

- Relaxation
 - Properties of Shortest Paths and Relaxation
 - Bellman-Ford
 - Single-source Shortest Paths in DAG

Arbitrage (Question 24-3)

Arbitrage is the use of discrepancies in currency exchange rates to turn a profit.

Arbitrage is the use of discrepancies in currency exchange rates to turn a profit.

Arbitrage (Question 24-3)
In single-source algorithms, a path p's π only revised by relax function.

\begin{align*}
\text{Initialize Single-Source}(G, s) & : \\
\forall v' \in V, \pi(v') & = a, \\
\pi(s) & = 0, \\
L & = \infty, \\
\text{for each vertex } & a \in V \in G.
\end{align*}

- p.\pi$ is a lower bound on the weight of a shortest path from source s to a.

Strategy: Start with an upper bound and keep revising it when you find a lower cost.

\begin{align*}
0 = p'.s \\
\infty = p'.a \\
L & = \pi(v) \\
\text{for each vertex } & a \in V \in G.
\end{align*}
Properties of Shortest Paths and Relaxation

- Triangle Inequality
 - For any edge \((u, v) \in E\), \(\delta(s, v) \leq \delta(s, u) + w(u, v)\)

- Upper-bound Property
 - \(v.d \geq \delta(s, v)\) for all \(v \in V\).
 - \(v.d\) only decreases in value

- No-path property
 - If there is no path from \(s\) to \(v\) then we always have \(v.d = \delta(s, v) = \infty\)

- Convergence Property
 - If \(s \rightarrow u \rightarrow v\) is a shortest path in \(G\) for some \(u, v \in V\) and if \(u.d = \delta(s, u)\) at any time prior to relaxing edge \((u, v)\)
 - then \(v.d = \delta(s, v)\)

Overview

- Relaxation
- Properties of Shortest Paths and Relaxation
- Dijkstra's Algorithm
- Single-source Shortest Paths in DAG
- Bellman-Ford
Housekeeping

- Once we know if edge exists, we know its weight in \(O(1)\) time.
- Weights stored in adjacency-list representation.
- Graph stored in adjacency-list representation.

\[
\begin{align*}
\infty + a &= \infty + a = \infty \quad \text{and} \\
\infty - a &= \infty - a = \infty
\end{align*}
\]

- Let \(a\) be a real number (so \(a \neq -\infty, \infty\))
- Arithmetic with infinity

Graph stored in adjacency-list representation

- Weights stored in adjacency-list.
- Once we know if edge exists, we know its weight in \(O(1)\) time.

Continued

- Path-relaxation Property
 - If \(p = \langle v_0, v_1, \ldots, v_k \rangle\) is a shortest path from \(s = v_0\) to \(v_k\) and we relax the edges of \(p\) in the order \((v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)\) then \(v_k.d = \delta(s, v_k)\). This holds even if other relaxation steps occur.
- Predecessor-subgraph property
 - Remember, there is a negative cycle, there is no shortest path.
 - This holds even if other relaxation steps occur.
 - Then we relax the edges of the order \(d\) in the order \(v_0, v_1, \ldots, v_{k-1}\) to get \(\langle v_0, v_1, \ldots, v_k \rangle = d\) if \(v_0 = s\), and \(v_0 = \infty\) otherwise.

Path-relaxation Property

Comparison

Comparison

Comparison
Bellman-Ford Algorithm

Bellman-Ford Algorithm

Overview

• Relaxation
• Properties of Shortest Paths and Relaxation

⇒ Bellman-Ford

• Single-source Shortest Paths in DAG

Bellman-Ford ⇐ Properties of Shortest Paths and Relaxation

• Relaxation

Dijkstra's Algorithm

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Single-source Shortest Paths in DAG

Bellman-Ford ⇐ Properties of Shortest Paths and Relaxation

Relaxation

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Single-source Shortest Paths in DAG

Bellman-Ford ⇐ Properties of Shortest Paths and Relaxation

Relaxation

Bellman-Ford Algorithm

Bellman-Ford Algorithm

Single-source Shortest Paths in DAG

Bellman-Ford ⇐ Properties of Shortest Paths and Relaxation

Relaxation
Time Complexity

- **How it Works**
 - Progressively decreases the estimate $v.d$
 - After $V - 1$ rounds, each vertex will reach its minimum value
 - Can work with negative edges
 - If it finds a negative cycle, returns False
 - Knows if there is a negative edge, if $v.d$ can be further reduced
 - Used in Reinforcement Learning
 - To update estimates of what sequence of actions to perform to finish a task
 - Can work with negative edges
 - After $V - 1$ rounds, each vertex will reach its minimum value
 - Progressively decreases the estimate $v.d$
Overview

- Dijkstra's Algorithm
- Bellman-Ford
- Relaxation

Properties of Shortest Paths and Relaxation

Example

Diagram showing a network with nodes and edges labeled with weights.
Faster with a DAG!

For a DAG can do this in $\Theta(V + E)$ time.

- Can be negative edges, but no cycles, so no negative weight cycles.
- Start with a topological sort of edges (u, v) means u precedes v.
- This will allow path relaxation property to be more efficient.

For a DAG can do this in $\Theta(V + E)$ time.
Proof:

How to we phrase the theorem?

Proof of Correctness (Theorem 24.5)

Code and Example

Running Time?
Overview

- Relaxation
- Properties of Shortest Paths and Relaxation
- Bellman-Ford
- Single-source Shortest Paths in DAG
- Dijkstra's Algorithm

Summary So Far

- Weighted directed graph
- Relaxation procedure
- Basis of all algorithms
- Bellman-Ford
- Can work with graphs with cycles and negative edges
- DAG shortest path
- Restricted to DAGs: much faster!
- Time: $\Theta(V + E)$

- Can detect negative cycles
- Time: $\Theta(V^2 E)$
Dijkstra's Algorithm

- Weight directed graph with no negative edges
 - Can have cycles, but no negative weight cycles

Breadth-first search

- Orders vertices by distance from source
- Can have cycles, but no negative weight cycles

Weighted directed graph with no negative edges

When are keys of min priority queue being updated?
- Lowered or increased?

Where is this like best-first? Where is the frontier?

What is the role of S?

Where are keys of min priority queue being updated?

```
RELAX(G, u)

for each vertex $v \in V - G \setminus \{n\} 
  \{n\} \cup S = S
  \{n\} \setminus S = \emptyset

while $\emptyset \neq \{n\}$
  $G = \{n\}$
  $S = \emptyset$

INITIALIZE-SINGLE-SOURCE(G, S)

DIJKSTRA(G, u)
```

How is this like best-first? Where is the frontier?

- Lowered or increased?

What are keys of min priority queue being updated?

Code
Continued

When \(x \) is added to \(S \), edge \((x, y)\) is relaxed, and so \(y.d \) is set to \(\delta(s,u) \) by convergence property.

But \(u \) is chosen, so \(u \) has minimum weight.

So the upper bound property is satisfied, since \(u \) is on a shortest path from \(s \) to \(u \).

When \(u \) is chosen, \(u \) has minimum weight.

But \(y.d \) is set to \(\delta(s,u) \), so \(p' \) is chosen over \(p \). By convergence property, \(\delta(s,y) \leq \delta(s,u) \) since \(y \) is on \(u \)'s shortest path.

By the upper bound property, \(u.d \geq \delta(s,u) \).

So \(u.d = \delta(s,u) \).

Contradiction.

Proof of Correctness

Claim: when we take a vertex \(v \) out of min priority queue (and into \(S \)), it will have its final weight: \(\delta(s,v) \).

Proof by Contradiction:

Let \(u \) be first vertex taken out of min priority queue (and into \(S \)).

In \(S \), the sum of \(u \) is correct (and into \(S \)).

Proof by Contradiction:

\((n',s) \notin p \cdot n \).

By Lemma 24.1, subpath of \(p \cdot d \) from \(s \) to \(n \) is a shortest path.

Let be a shortest path from \(s \) to \(n \).

Proof by Contradiction:

\((a',s) \notin p' \cdot n \) because no path property tells us that \(n \) would be \(\infty \).

Claim: when we take a vertex \(v \) out of min priority queue (and into \(S \)), it will have its final weight: \(\delta(s,v) \).
Greedy Algorithm

Timing
Summary

- All work on weighted directed graphs
- Relaxation procedure: Basis of all algorithms
 - Bellman-Ford
 + Can work with graphs with negative weight cycles
 + Can detect negative cycles
 + Time: $\Theta(VE)$
 - DAG Shortest Path
 + Dijkstra's algorithm
 + No negative edges, can have 0 weight edges
 + Can have cycles, but no negative weight cycles
 + Time: $\Theta(E \log V)$ (assuming all vertices are reachable)
 + Bellman-Ford
 + Can work with graphs with cycles and negative edges
 + All work on weighted directed graphs