Overview of Chapter

- Ground work
 - Generic minimum spanning tree method
- Compare two algorithms
 - Kruskal's algorithm
 - Prim's algorithm
- Ground work

Minimum Spanning Trees (Chapter 23)

- Connected Undirected graph
- Edges have weights
- Vertices and edges
- Minimum spanning tree
- Forests minimum weight subset of edges that connects every vertex
- Spanning tree

Questions:

- How fast is this used for?
- When might this be used for?
- Do we have to add the acyclic?
- Hence the use of the term spanning tree
- Does not need to be a path
- Must be connected
- Connected Unirected Graph

P. Heeman, 2017

© P. Heeman, 2017
Growing a Min-Spanning Tree

- Such an edge is called a safe edge.
- At each step, determine an edge (u, v) that we can add to \(V \), where \(V \) is a subset of some minimum spanning tree.
- Loop invariant: \(\emptyset = G \) (a set of edges) starting with \(V \).

Generic Method for Growing a Tree

Let \(G = (V, E) \) with a weight function \(w : E \to \mathbb{R} \).
Theorem 23.1: In Plain English

- Will it be greedy?
- Will find minimum spanning tree

Any algorithm that follows Theorem 23.1:

- Do we evolve the cut or pick a fresh cut each time?
- How should we pick cut?
- Is it hard to find such a cut?

Questions:

- Is it easy to find a safe edge?
- Find edge of min weight edge that crosses cut
- Pick some vertices to make a cut that respects A
- If you have A, a partial min-spanning tree for G

Theorem 23.1

Let $G = (V, E)$ be a connected, undirected graph with $\omega : E \rightarrow \mathbb{R}$.

Let A be a subset of E that is included in some minimum spanning tree for G.

Let $C = (F, A)$ be a connected, undirected graph with $\omega : F \rightarrow \mathbb{R}$.

Finding Safe Edges

- Edge is a safe edge if its weight is min of any edge
- A cut respects a set of edges if no edge in F crosses the cut
- Edge crosses cut F if one vertex in F and the other in A is in a partition of $A - S$.
- Definition:
Another way to look at the Algorithm

- Define \(G_A = (V, A) \)
 - \(G_A \) is a forest
 - Each connected component in \(G_A \) is a tree (no cycles, connected)
- Algorithm
 - Start with \(A = \emptyset \).
 - \(G_A \) has \(|V|\) trees
 - Any safe edge \((u, v)\) will connect two distinct components of \(G_A \).
 - \(|A| = 0 \) if \(A \) has no trees

Proof (Not by contradiction)

Let \(T \) be a min-spanning tree that includes \(A \)

Let \((S, V-S)\) be a cut that respects \(A \).

Let \((u, v)\) be a light edge that crosses the cut.

Case 1:
\((u, v) \in T\).
Done

Case 2:
\((u, v) \) forms a cycle with edges on simple path from \(u \) to \(v \) in \(T \).
Hence, at least one other edge \((x, y)\) in \(T \) must cross cut

Create \(T' \) by removing \((x, y)\) and adding \((u, v)\).

\(T' \) will be a spanning tree.

Since \((u, v)\) is lighter, its weight must be same as \((x, y)\).

So \(T' \) will also be a min-spanning tree.

Form a cycle with edges on simple path from \(u \) to \(v \) in \(T \).

Case 2: \(\exists (a'\cdot n) \in \mathbb{E} \).

Done
Overview

Growing a Min Spanning Tree

Prim's Algorithm

Kruskal's Algorithm

Questions

• What are the choices left?
• How does this restrict the cut used?
• How does this restrict the previous algorithm?
• What is the cut used by the light edge crossing?

Corollary 23.2

Let $G = (V, E)$ be a connected, undirected graph with $w : E \to \mathbb{R}$.

Let A be a subset of E that is in some min spanning tree of G.

Let C be a connected component of G_A.

If (u, v) is a light edge between C and some other component in G,

then (u, v) is safe for A.
Kruskal's Algorithm

1. INIT-SET(P) for each vertex $v \in G$
2. Sort the edges of G into non-decreasing order by weight w
3. MAKE-SET(u) for each vertex $v \in G$
4. Sort the edges of G into non-decreasing order by weight w
5. FOR each edge $(u,v) \in G$: taken in non-decreasing order by weight
6. IF FIND-SET(u) \neq FIND-SET(v) THEN
7. UNION(u, v)
8. RETURN A

What data structures does it need?

Can this be proved correct by Corollary 23.2?

Pick edge (u,v) of min weight connecting any two trees in G

MST-KRUSKAL(G)

Code
Running Time

- Overall $O(\log V)$ operations
- From Chapter 21: $O(E \log E)$ operations
- So $O(E)$ operations
- Graph is fully connected so

```
|A| > |E|

$\lambda \geq \log E = \log |E| \geq \log |V| - 1$
```

- $|E| \geq |V| - 1$
- $|E| < |V|^2$

Set operations:

- make-set $O(1)$
- find-set $O(1)$
- union $O(1)$
- union $O(1)$
- make-set $O(1)$

For each edge $e \in E$, taken in nondecreasing order by weight w:

```
1. make-set $V \in E$
2. find-set $V \in E$
3. union
4. sort the edges of $E$ in nonincreasing order by weight $w$
5. for each edge $e = u \rightarrow v$ in nonincreasing order by weight $w$
6. return
```

Example
Prim's Algorithm

- Can easily be \(O(VE) \)
- Go through all edges to find min connecting \(A \) to a vertex not in \(A \)
- To determine next vertex to add:
 - Add a light edge that connects \(A \) to a new vertex
 - Scan with an arbitrary vertex
 - Edges in a always form a single tree

Overview

- Growing a Min Spanning Tree
- Prim's Algorithm
- Kruskal's Algorithm
\[
\begin{align*}
&(a, n) \cdot n = \omega \cdot a, \\
n = n \cdot a, \\
\omega \cdot a > (a, n) \cdot n & \Rightarrow \quad \text{for each } a \in \emptyset \quad \text{and } a \in \emptyset \\
\text{for each } a \in \emptyset & \Rightarrow \text{EXTRACT-MIN}(\emptyset) = n \\
\emptyset \neq \emptyset & \Rightarrow \\
\emptyset, \emptyset & = 0 \\
0 = \omega \cdot n & = \text{NIL} \\
\text{NIL} = n & = \omega \cdot n \\
\omega \cdot n & = \text{NIL} \\
\emptyset & = \emptyset \\
\text{for each } & \text{ not in } A \\
\text{MST-PRI(M}(G, n, u), w) \\
\end{align*}
\]

A Better Way

- Need to update weights: min-priority queue
 - If it does, update its weight/edge
 - For all vertices adjacent to \(u \), see if \(u \) provides better way to \(A \) (via \(n \))
 - When new vertex \(u \) added to \(A \)
 - No edge to \(A \): use \(\infty \)
 - Keep its weight/edge to any vertex in \(A \)
 - Keep its min weight/edge to any vertex in \(A \)
 - For each vertex not in \(A \)
Running Time

Example