Minimum Spanning Trees (Chapter 23)

- Connected Undirected graph
- Edges have weights
- Find minimum weight subset of edges that connects every vertex and is acyclic
 - Must be connected
 - Does not need to be a path
 + Hence the use of the term *spanning tree*

Do we need to require the min spanning tree to be acyclic?
What about an unweighted graph?
What might this be used for?
How fast might this be?

Overview of Chapter

- Lay ground work
 - Generic minimum spanning tree method
- Contrast two algorithms
 - Kruskal’s algorithm
 - Prim’s algorithm
- Both make use of the generic method
- Both are greedy algorithms
 - *Greedy strategy advocates making the choice that is best at the moment*
 - Can prove their greedy strategy is optimal
Overview

⇒ Growing a Min Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm

Growing a Min-Spanning Tree

• Let $G = (V, E)$ with a weight function $w : E \to \mathbb{R}$
• Generic Method for growing a tree
 - Grow set A (a set of edges) starting with $A = \emptyset$
 - Loop invariant:
 - A is a subset of some minimum spanning tree
 - At each step, determine an edge (u, v) that we can add to A that maintains loop invariant:
 - $\{ (u, v) \} \cup A$ is a subset of a min spanning tree
 - Such an edge is called a safe edge

*Greedy?
*Optimal?
*Difficulty?
Finding Safe Edges

• Definitions:
 - **Cut** \((S, V-S)\) of an undirected graph \(G = (V, E)\) is a partition of \(V\)
 - Edge \((u, v) \in E\) crosses cut \((S, V-S)\) if one vertex in \(S\) other in \(V-S\)
 - A cut respects a set of edges \(A\) if no edge in \(A\) crosses the cut
 - Edge is a **light edge** crossing a cut if its weight is min of any edge crossing cut. Can be ties.

![Diagram of a graph with edges and vertices labeled]

Theorem 23.1
Let \(G = (V, E)\) be a connected, undirected graph with \(w : E \rightarrow \mathbb{R}\).
Let \(A\) be subset of \(E\) that is included in some min-spanning tree for \(G\).
Let \((S, V-S)\) be any cut of \(G\) that respects \(A\).
Let \((u, v)\) be a light edge crossing \((S, V-S)\).
Then edge \((u, v)\) is safe for \(A\)
Proof (Not by contradiction)

Let T be a min-spanning tree that includes A.

Let $(S, V - S)$ be a cut that respects A.

Let (u, v) be a light edge that crosses the cut.

Case 1: $(u, v) \in T$. Done.

Case 2: $(u, v) \not\in T$.

There is a simple path p in T from u to v since T is a min spanning tree.

p forms a cycle.

u and v are on opposite sides of the cut $(S, V - S)$.

Hence, at least one other edge in p, say (x, y), must cross the cut.

(x, y) is not in T, since the cut respects A.

Create T' by removing (x, y) and adding (u, v).

T' will be a spanning tree.

Since (u, v) is light, its weight must be the same as (x, y).

So T' will also be a min spanning tree.

Theorem 23.1: In Plain English

- If you have A, a partial min-spanning tree for G.
 - Pick some vertices to make a cut that respects A.
 - Find light edge: edge of min weight that crosses cut.

- It is a safe edge.

Questions:

- Is it hard to find such a cut?
- How should we pick cut?
- Will it be greedy?

- Any algorithm that follows Theorem 23.1.

- Will find minimum spanning tree.
Another way to look at the Algorithm

\begin{itemize}
 \item Define \(G_A = (V, A) \) (the graph with the edges \(A \))
 \begin{itemize}
 \item \(G_A \) is a forest
 \item Each connected component in \(G_A \) is a tree (no cycles, connected)
 \end{itemize}
 \item Algorithm
 \begin{itemize}
 \item Start with \(A = \emptyset \). \(G_A \) has \(|V| \) trees
 \item Any safe edge \((u, v)\) will connect two distinct components of \(G_A \)
 \begin{itemize}
 \item regardless of how a cut is chosen
 \end{itemize}
 \item Each iteration reduces the number of components by 1
 \item Ends when there is just one component
 \end{itemize}
\end{itemize}

Corollary 23.2

Let \(G = (V, E) \) be a connected, undirected graph with \(w : E \rightarrow \mathbb{R} \)
Let \(A \) be a subset of \(E \) that is in some min spanning tree of \(G \)
Let \(C = (V_C, E_C) \) be a connected component (tree) in forest \(G_A = (V, A) \).
If \((u, v)\) is a light edge between \(C \) and some other component in \(G_A \),
then \((u, v)\) is safe for \(A \)

\begin{itemize}
 \item Questions
 \begin{itemize}
 \item What is the cut that the light edge is crossing?
 \item How does this restrict the previous algorithm
 \begin{itemize}
 \item How does this restrict what cut is used?
 \end{itemize}
 \item What choices are left?
 \end{itemize}
\end{itemize}
Overview

• Growing a Min Spanning Tree
 ⇒ Kruskal’s Algorithm
• Prim’s Algorithm

Kruskal’s Algorithm

• Pick edge \((u, v)\) of min weight connecting any two trees in \(G_A\)
 - Can this be proved correct by Corollary 23.2?
 + You actually pick the edge first, say \((u, v)\)
 + Then you specify what \(C_1\) is: component that \(u\) is in
 + Since \((u, v)\) is minimum, it is a min edge coming out of \(C_1\)
Example

Code

MST-KRUSKAL(G, w)
1 $A = \emptyset$
2 for each vertex $v \in G.V$
3 \hspace{1em} MAKE-SET(v)
4 \hspace{1em} sort the edges of $G.E$ into nondecreasing order by weight w
5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight
6 \hspace{1em} if $\text{FIND-SET}(u) \neq \text{FIND-SET}(v)$
7 \hspace{2em} $A = A \cup \{(u, v)\}$
8 \hspace{1em} UNION(u, v)
9 \hspace{1em} return A

• What data structures does it need?
 + Components: disjoint sets (forest implementation is faster)
 + Edges: sort it into an array (min priority queue not needed)
 + Min-spanning edges: array
Running Time

• Lines 4: $O(E \log E)$

Set operations
- $O(V)$ make-set
- $O(E)$ find-set
- $O(V)$ union
- $O(V + E)$ operations
- Graph is fully connected so $|E| \geq |V| - 1$
- So $O(E)$ operations
- From Chapter 21.4: $O(E \log E)$

• Overall $O(E \log E) = O(E \log V)$
- $|E| < |V|^2$

Overview

• Growing a Min Spanning Tree
• Kruskal’s Algorithm
 \Rightarrow Prim’s Algorithm
Prim’s Algorithm

- Edges in A always form a single tree
 - Start with an arbitrary vertex
 - Add a light edge that connects A to a new vertex
- To determine next vertex to add
 - Go through all edges to find min connecting A to a vertex not in A
 - Can easily be $O(VE)$

A Better Way

- For each vertex not in A
 - Keep its min weight/edge to any vertex in A
 - No edge to A: use ∞
- When new vertex u added to A
 - For all vertices v adjacent to u, see if u provides better way to A (via u)
 - If it does, update its weight/edge
- Need to update weights: min-priority queue
Code

\[
\text{MST-PRIM}(G, w, r)
\]

1. \textbf{for} each \(u \in G.V \)
2. \(u.key = \infty \)
3. \(u.\pi = \text{NIL} \)
4. \(r.key = 0 \)
5. \(Q = G.V \)
6. \textbf{while} \(Q \neq \emptyset \)
7. \(u = \text{EXTRACT-MIN}(Q) \)
8. \textbf{for} each \(v \in G.Adj[u] \)
9. \hspace{1em} \textbf{if} \(v \in Q \) and \(w(u, v) < v.key \)
10. \hspace{2em} \(v.\pi = u \)
11. \hspace{2em} \(v.key = w(u, v) \)

Example

![Graph](image)
Running Time

- Use min priority queue
 - $O(V)$ to build heap. Why?

- For each vertex, for each edge
 - Updating key

MST-PRIM(G, w, r)

1. for each $u \in G.V$
2. $u.key = \infty$
3. $u.\pi = \text{NIL}$

4. $r.key = 0$
5. $Q = G.V$
6. while $Q \neq \emptyset$
7. $u = \text{EXTRACT-MIN}(Q)$
8. for each $v \in G.\text{Adj}[u]$
9. \hspace{1em} if $v \in Q$ and $w(u, v) \lt v.key$
10. \hspace{2em} $v.\pi = u$
11. \hspace{1em} $v.key = w(u, v)$

$O(V)$ to build heap. Why?