Elementary Graph Algorithms

Chapter 22

Overview

⇒ Representation of Graphs
• Breadth First Search
• Depth-First Search
Storing a Graph

• Graph: set of vertices and edges between vertices:
 - \(G = (V, E) \) where \(V \) is a set of vertices and \(E \) is a set of pairs \((u, v)\)
 where \(u, v \in V \)
 - Directed: \(u \) and \(v \) are connected
 - Undirected: you can go from \(u \) to \(v \) (can also have edge \((v, u)\))

• Can store a graph:
 - Adjacency list for each vertex
 + Needs size \(\Theta(|V| + |E|) \)
 - Adjacency matrix:
 + Assume vertices numbered from 0 to \(|V| - 1\)
 + Needs size \(\Theta(|V|^2) \)

Examples

• Undirected Graph

 \[
 \begin{array}{c|cccc}
 1 & 2 & 3 & 4 & 5 \\
 \hline
 1 & 0 & 1 & 0 & 1 \\
 2 & 1 & 0 & 1 & 1 \\
 3 & 1 & 0 & 1 & 0 \\
 4 & 0 & 1 & 1 & 0 \\
 5 & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

• Directed Graph

 \[
 \begin{array}{c|cccc}
 1 & 2 & 3 & 4 & 5 & 6 \\
 \hline
 1 & 0 & 1 & 0 & 0 & 0 \\
 2 & 0 & 0 & 0 & 1 & 0 \\
 3 & 0 & 0 & 0 & 1 & 1 \\
 4 & 0 & 1 & 0 & 0 & 0 \\
 5 & 0 & 0 & 0 & 1 & 0 \\
 6 & 0 & 0 & 0 & 0 & 1 \\
 \end{array}
 \]
Which is Better: Adjacency lists or matrix?

- Which takes less space if matrix is sparse or dense?
 - If sparse, adjacency list might take less space
 - If dense, adjacency matrix takes less space
- Which is better if iterating over edges?
 - If edges are sparse, adjacency matrix takes $|V|^2 \gg |E|$.
- If need to check if edge between two vertices
 - Adjacency matrix gives $O(1)$ time
- Either can be used for weighted graphs

Question

22.1-6

Most graph algorithms that take an adjacency-matrix representation as input require time $\Omega(V^2)$, but there are some exceptions. Show how to determine whether a directed graph G contains a *universal sink*—a vertex with in-degree $|V| - 1$ and out-degree 0—in time $O(V)$, given an adjacency matrix for G.
Overview

- Representation of Graphs
 ⇒ Breadth First Search
- Depth-First Search

Breadth-first Search

- Given a graph $G = (V, E)$ and a source vertex s
 - BFS systematically explores the edges of G to discover every vertex that is reachable from s
 - Computes distance (smallest # of edges) from s to each reachable vertex
 - Produces **breadth-first tree** with root s containing all reachable vertices
 - For any vertex v reachable from s, the simple path in the breadth-first tree from s to v corresponds to a “shortest path” from s to v in G
 - Works on both directed and undirected graphs
Overview of How it Works

• BFS is so named because it expands a frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier
• Discovers all vertices at distance k from s before discovering any vertices at distance $k + 1$
• Can be viewed as coloring the vertices:
 - gray on the frontier
 - black discovered
 - white undiscovered

How it Works

• Frontier of gray vertices kept as queue
• Initially put root node on queue
• Take top node v off of queue
 - For each node u adjacent to v that is white
 - Add edge (u, v) to tree (or set predecessor of v to u)
 - Set $v.d$ to $u.d + 1$
 - Color v gray and add it to queue

• Breadth-First Tree
 - Has all vertices reachable from root, and edges used in algorithm
 - Defines parent (or predecessor), ancestor and descendant relationship
Code

BFS\((G, s) \)
1. for each vertex \(u \in G.V - \{s\} \)
2. \(u.color = \text{WHITE} \)
3. \(u.d = \infty \)
4. \(u.\pi = \text{NIL} \)
5. \(s.color = \text{GRAY} \)
6. \(s.d = 0 \)
7. \(s.\pi = \text{NIL} \)
8. \(Q = \emptyset \)
9. ENQUEUE\((Q, s) \)
10. while \(Q \neq \emptyset \)
11. \(u = \text{DEQUEUE}(Q) \)
12. for each \(v \in G.Adj[u] \)
13. if \(v.color = \text{WHITE} \)
14. \(v.color = \text{GRAY} \)
15. \(v.d = u.d + 1 \)
16. \(v.\pi = u \)
17. ENQUEUE\((Q, v) \)
18. \(u.color = \text{BLACK} \)

Illustration
Toward Proving BFS gives Shortest Paths

- Define $\delta(s, v)$ as the shortest path distance from s to v
 - Minimum number of edges in any path from s to v
 - If no path, then ∞
 - A path of length $\delta(s, v)$ from s to v is called a shortest path

- Following Proof is similar to textbook
Proof by contradiction:
Say that u is reachable from s but u is not in breadth-first tree
Since u is reachable from s there is a path from s to u:
$s=v_0, v_1, v_2, ..., u=v_n$
Must be a first vertex that is not in breadth-first tree, say v_i
v_{i-1} is in breadth-first tree and edge (v_{i-1}, v_i) is not in tree
The BFS algorithm would have been added it.
Contradiction

Proof by contradiction:
Let u be a vertex in the breadth-first tree whose best path from s
to u is $s=v_0, v_1, v_2, ..., u=v_n$
Assume that $\delta(s, u) < u.d$
There must be a first vertex in the path that goes astray. Say v_i
So $\delta(s, v_i) = i < v_i.d$ but $\delta(s, v_j) = j = v_j.d$ for $j < i$
i $\neq 0$ since s has a path of 0 length, which is found by BFS
So $0 < i \leq n$
Continued

How does BFS add \(v_j \) to tree?
Case 1:
if \(v_i \) was added to the queue via \(v_{i-1} \)'s adjacency list, so \(v_i.d = v_{i-1}.d + 1 = i \).
Contradiction
Case 2:
if \(v_i \) was before \(v_{i-1} \)'s adjacency list is processed.
\(v_i \)'s path length in breadth-first tree can be at most \(v_{i-1} + 1 \) since depths are processed systematically.
Contradiction

Question

22.2-4
What is the running time of BFS if we represent its input graph by an adjacency matrix and modify the algorithm to handle this form of input?
Overview

- Representation of Graphs
- Breadth First Search
 ⇒ Depth-First Search

Depth-First Search

- Explore adjacency list with a stack
- Explore all nodes
 - Can create several trees
- Vertex properties
 - Predecessor
 - Time-stamps
Code

DFS(G)
1 for each vertex u ∈ G. V
2 u.color = WHITE
3 u.π = NIL
4 time = 0
5 for each vertex u ∈ G. V
6 if u.color == WHITE
7 DFS-Visit(G, u)

DFS-Visit(G, u)
1 time = time + 1 // white vertex u has just been discovered
2 u.d = time
3 u.color = GRAY
4 for each v ∈ G.Adj[u] // explore edge (u, v)
5 if v.color == WHITE
6 v.π = u
7 DFS-Visit(G, v)
8 u.color = BLACK // blacken u; it is finished
9 time = time + 1
10 u.f = time

Illustration
Theorem 22.7 (Parenthesis Theorem)
In any depth-first search of a graph $G = (V, E)$, for any two vertices u and v, exactly one of the following three conditions hold:

- $[u.d, u.f]$ and $[v.d, v.f]$ are entirely disjoint and neither u nor v is a descendant of the other in the depth-first search.
- $[u.d, u.f]$ is contained entirely within $[v.d, v.f]$, and u is a descendant of v in the depth-first tree.
- vice versa.

Properties

- Predecessor subgraph G_{π}
 - Is a forest of trees (might just be one tree)
 - Vertex v is a descendant of vertex u in the depth-first forest iff v is discovered during the time in which u is gray.
 - Discovery and finishing times have parenthesis structure.

Parenthesis Theorem

Theorem 22.7 (Parenthesis Theorem)
In any depth-first search of a graph $G = (V, E)$, for any two vertices u and v, exactly one of the following three conditions hold:

- $[u.d, u.f]$ and $[v.d, v.f]$ are entirely disjoint and neither u nor v is a descendant of the other in the depth-first search.
- $[u.d, u.f]$ is contained entirely within $[v.d, v.f]$, and u is a descendant of v in the depth-first tree.
- vice versa.
More Theorems

Corollary 22.8 (Nesting of descendants’ intervals)
Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected) graph G iff $u.d < v.d < v.f < u.f$

Theorem 22.9 (White-path theorem)
In a depth-first forest of a (directed or undirected) graph, vertex v is a descendant of vertex u iff at the time $u.d$ that the search discovers u, there is a path from u to v consisting entirely of white vertices.

Proof of White Path Theorem

Part 1: \Rightarrow

v is a descendant of u \Rightarrow there is a path of white nodes from u to v

So there is a path in the predecessor subgraph from v to u

All nodes on path must have been added when they were white

So must have been white when u was discovered (time $u.d$)

Part 2: \Leftarrow

there is a path of white nodes from u to v \Rightarrow v is a descendant of u

Say that v is not a descendant.

WLOG, assume v is first node in path that is not a descendant

So v’s predecessor in the path, say p, is a descendant of u

$(p, v) \in E$, and v was white when p was explored

So v would have been added while u was still gray
Classification of Edges

\[G = (V, E) \text{ and } G_\pi: \text{ depth-first forest produced by a depth-first search on } G \]

- **Tree edges**: edges in \(G_\pi \)

 - i.e., \((u, v)\): \(v \) was first discovered by exploring edge \((u, v)\) or \((v, \pi, v)\)

- **Back edge**: edges \((u,v)\) connecting a vertex \(u \) to an ancestor \(v \) in a depth first search (will include self loops in directed graph)

- **Forward edge**: non tree edge \((u,v)\) connecting a vertex \(u \) to a descendant \(v \)

- **Cross edges**: all other edges.

 - Can go between vertices in the same depth-first tree, as long as one ancestor is not an ancestor of the other

 - Can also be between trees

Example

Previous graph redrawn so tree edges and forward edges point down, and back edges point up
Theorem 22.10

In a depth-first search of an undirected graph, every edge is either a tree edge or back edge

Color of Nodes and Tree Edges

When search over all edges, how does color of node reached, indicate its type?

- **White?**
  ```plaintext
  DFS-V ISIT(G, u)
  1  time = time + 1
  2  u.d = time
  3  u.color = GRAY
  4  for each v \in G.Adj[u]
  5     if v.color == WHITE
  6         v.\pi = u
  7         DFS-V ISIT(G, v)
  8     u.color = BLACK
  9     time = time + 1
  10    u.f = time
  ```

- **Gray?**
- **Black?**
Question

Give a directed graph in which there is a path from u to v, and there is a DFS in which u is not the ancestor of v.

Question 22.3-9

Give a counterexample to the conjecture that if a directed graph G contains a path from u to v, then any depth-first search must result in $v.d \leq u.f$.

In other words, give a directed graph in which there is a path from u to v, and there is a DFS in which u is fully processed before v is even discovered.