Data Structures

- Have $n \gg 0$ items and need to extract them from smallest to largest
- Have $n \gg 0$ items and need to extract them from smallest to largest, but sometimes need to add new elements in
- Have $n = 10$ items and need to extract them from smallest to largest, but sometimes need to add new elements in

Overview

⇒ Disjoint Set Operations
 • Linked-List Representation
 • Disjoint Forests
Disjoint Set

- A bunch of elements
 - Each can be only one set \Rightarrow disjoint sets
- Dynamic set
 - New elements added to set
- Identify a set by an element in the set: representative
 - Doesn’t matter which element it is
 - Needs to be same element while set is not modified

Operations

- Make-Set(x)
 - Creates a new set whose only member is x
 - x cannot already be in some other set
- Union(x,y)
 - Unites the sets represented by x and y
 - Assume set are disjoint beforehand
- Find-Set(x)
 - Returns a pointer to the representative of the set containing x
- No other operations
 - No delete

*What can it be used for?
Analysis

• Analyze performance via:
 - n number of Make-Set operations
 - m number of Make-Set, Union, and Find-Set operations

• Each union reduces number of sets by 1
 - Can be at most $n - 1$ unions
 - Assume n Make-set operations occur first

Application of Disjoint Sets

• Connected components in a Graph

![Graph with connected components](image)

<table>
<thead>
<tr>
<th>Edge processed</th>
<th>Initial sets</th>
<th>Collection of disjoint sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e,b)</td>
<td>(e)</td>
<td>(e)</td>
</tr>
<tr>
<td>(e,d)</td>
<td>(e,d)</td>
<td>(e,d)</td>
</tr>
<tr>
<td>(a,e)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>(a,c)</td>
<td>(a,c,d)</td>
<td>(a,c,d)</td>
</tr>
<tr>
<td>(c,d)</td>
<td>(c,d)</td>
<td>(c,d)</td>
</tr>
<tr>
<td>(a,b)</td>
<td>(a,b,c,d)</td>
<td>(a,b,c,d)</td>
</tr>
<tr>
<td>(a,j)</td>
<td>(a,b,c,d)</td>
<td>(a,b,c,d)</td>
</tr>
<tr>
<td>(b,j)</td>
<td>(a,b,c,d)</td>
<td>(a,b,c,d)</td>
</tr>
</tbody>
</table>

Figure 21.1 (a) A graph with four connected components: (a,b,c,d), (e,f,g), (h,i) and (j). (b) The collection of disjoint sets after processing each edge.
Proof

Question 21.1-2
After all edges are processed by Connected-Components, show that two vertices are in the same connected component if and only if they are in the same set.

Proof:

\[x \text{ and } y \text{ in same component} \implies x \text{ and } y \text{ in same set} \]

\[x \text{ and } y \text{ in same set} \implies x \text{ and } y \text{ in same component} \]
Overview

- Disjoint Set Operations
 ➔ Linked-List Representation
- Disjoint Forests

Figure 21.2 (a) Linked-list representations of two sets. Set S_1 contains members d, f, and g, with representative f, and set S_2 contains members b, c, e, and h, with representative c. Each object in the list contains a set member, a pointer to the next object in the list, and a pointer back to the set object. Each set object has pointers head and tail to the first and last objects, respectively. (b) The result of UNION(g,e), which appends the linked list containing e to the linked list containing g. The representative of the resulting set is f. The set object for e’s list, S_2, is destroyed.
Time Analysis

- Make-Set(x) and Find-Set(x)
 - $O(1)$ time

- Union
 - $O(1)$ to find end of 1st list and point it to start of 2nd list
 - But must change children of second list to point to first list
 - Worst case: join bigger to smaller
 - Worst case running time?

 - Best case: join bigger to smaller
 - Best case running time?

Weighted-Union Heuristic

- Worst case since appending a longer list onto a shorter list

- Improvement:
 - Check which list is shorter, append it onto longer list
 - **Weighted-Union Heuristic**
 - How do we know which is shorter in $O(1)$ time?

Theorem 21.1
Using linked-list and weighted-union heuristic, a sequence of m
Make-set, Union, and Find-Set, n of which are Make-set, will take
$O(m + n \log n)$

- What is maximum number of unions?
- What is running time of non-unions?
- Just need to prove that $n - 1$ unions take $O(n \log n)$
Proof

Running time is same as number of times an element’s pointer is changed to point to another set. Each time it is changed, put into a set at least twice as large. So most changes are: $\lg n$
Faster Implementation: Disjoint-set Forests

- Use rooted trees (Chapter 11)
 - Each node contains a member, each tree represents a set
 - Forest for the sets
 - Just use parent pointers

Heuristics to Improve Running Time

- Union by rank
 - Similar to weighted-union heuristic for linked lists
 - Make root of tree with fewer nodes the child node
 - How can we keep track of number of nodes without adding extra time?
 + Rank: upper bound on height of node (max number of edges to get to a leaf)
 - When unioning, just root’s rank might need to be updated
Heuristics

- **Path Compression**
 - During find-set’s traversal to root of tree, make each node point to root
 - Don’t update rank: rank is an upper bound anyways, and no way to do it

![Diagram of path compression](image)

- **Make-Set**
 1. `x.p = x`
 2. `x.rank = 0`

- **Union**
 1. `LINK(FIND-SET(x), FIND-SET(y))`

```
MAKE-SET(x)
1 x.p = x
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)
1 if x.rank > y.rank
2 y.p = x
3 else x.p = y
4 if x.rank == y.rank
5 y.rank = y.rank + 1
```

- **Find-Set**
 1. `if x.p != x` (Tail-end recursion)

```
FIND-SET(x)
1 if x.p != x
2 x.p = FIND-SET(x.p)
3 return x.p
```