Dictionary Operations

• Dictionary operations: insert, search, delete
 - Search means ...
 + Was the key inserted into the table?
 + Set membership
 + To find the value of satellite data associated with the key
 - Should be efficient. Hopefully $O(1)$
Direct-Address Tables

- When \(|U| \sim |K|\)

 DIRECT-ADDRESS-SEARCH\(T; k\)
 1. \(\text{return } T[k]\)

 DIRECT-ADDRESS-INSERT\(T; x\)
 1. \(T[y.key] = x\)

 DIRECT-ADDRESS-DELETE\(T; x\)
 1. \(T[y.key] = \text{NIL}\)

 Each of these operations takes only \(O(1)\) time.

<table>
<thead>
<tr>
<th>(U) (universe of keys)</th>
<th>(K) (actual keys)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>(h(k_1))</td>
</tr>
<tr>
<td>(k_2)</td>
<td>(h(k_2))</td>
</tr>
<tr>
<td>(k_3)</td>
<td>(h(k_3))</td>
</tr>
<tr>
<td>(k_4)</td>
<td></td>
</tr>
</tbody>
</table>

Hash-Tables

- When \(|U| \gg |K|\)
 + Reduce storage requirements but still maintain \(O(1)\) access time
 + Terminology: \(k\) hashes to \(h(k)\)

<table>
<thead>
<tr>
<th>(U) (universe of keys)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>0</td>
</tr>
<tr>
<td>(k_2)</td>
<td>(h(k_1))</td>
</tr>
<tr>
<td>(k_3)</td>
<td>(h(k_2))</td>
</tr>
<tr>
<td>(k_4)</td>
<td>(h(k_3))</td>
</tr>
<tr>
<td>(k_5)</td>
<td>(m-1)</td>
</tr>
</tbody>
</table>

\(k_6\)	\(h(k_5)\)
\(k_7\)	\(h(k_6)\)
\(k_8\)	\(h(k_7)\)
\(k_9\)	\(h(k_8)\)
\(k_{10}\)	\(h(k_9)\)
Collisions

• Two keys might hash to the same value
 - Collision
 - Can happen since size of universe \gg size of hash table
• Try to avoid collisions as much as possible
 - Hash function is deterministic: $h(k)$ is always same value
 - Will hopefully map keys randomly across the hash table

Overview

• Hash Tables
 ⇒ Chaining
• Hash Functions Chapter 11.3
• Open Addressing (Chapter 11.5)
Efficiency of Dictionary Operations

- **Insert(T,x)**
 - Insert x at the head of list $T[h(x.key)]$
 - If we do not check if $x.key$ is already in list: $O(1)$

- **Search(T,k)**
 - Search for an element with key k in list $T[h(k)]$
 - Worst case: proportional to length of list

- **Delete(T,x)**
 - Delete x from list $T[h(x.key)]$
 - $O(1)$ time since we already have pointer to element and if doubly-linked
Analysis of Hashing with Chaining

- Load factor α: n/m where n is keys stored, and m is size of table
- Worse-case for search is $\Theta(n)$
 - Same as using one linked list for all elements
- Average-case performance of hashing depends on how well h distributes keys among m slots on average
 - Let n_j be length of list $T[j]$ for $0 \leq j \leq m$
 - So $\sum_{i=0}^{m-1} n_i = n$
 - So $E[n_j] = \alpha = n/m$
 - But what is the expected value for hash values that are used?
 + If keys not distributed randomly, could still be all in one hash value
 so search takes $\Theta(n)$ time

Analysis of Search

- Assume hash of key is independent of keys already inserted
 - Referred to as simple uniform hashing assumption

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1 + \alpha)$, under simple uniform hashing assumption.

Proof:
Under assumption of simply uniform hashing, any key k not already stored in table is equally likely to hash to any of the m slots.

Expected time to search unsuccessfully for k is expected time to search to end of list $T[h(k)]$, which has expected length $E[n_{h(k)}] = \alpha$.

Thus, expected number of elements examined in an unsuccessful search is α, and total time including computing $h(k)$ is $\Theta(1 + \alpha)$
Successful Search

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a **successful** search takes average-case time $\Theta(1 + \alpha)$, under simple uniform hashing.

Proof:
We assume element being searched x for is equally likely to be any of the n elements stored in the table.
How many other elements are in the same list?
How far x is from front of list?
Textbook gives a big derivation, but under simple uniform hashing works out to be $\Theta(1 + \alpha)$

Implications

- **Load factor** α: n/m where n is keys stored, and m is size of table
- **Search time depends on load factor**
 - If number of keys used is proportional to size of table
 - Search is $O(1)$ time
What Makes a Good Hash Function?

• Should satisfy assumption of simple uniform hashing
 - Each key is equally likely to hash to any of the \(m \) slots regardless of what the other keys have hashed to
 - But, rarely know the probability distribution from which keys are drawn

• Domain knowledge might help in designing hash function
 - If we know keys are random real numbers \(k \) independently and uniformly distributed in range \(0 \leq k < l \)
 - Good hash function?
 - Hashing English words: be careful of ‘hat’ and ‘hats’
 - Don’t use suffix ... or prefix

• Good approach
 - Make hash function independent of any patterns that might exist in data
Division Method

- Assume keys are in the set of natural numbers
 - Otherwise find way to map them to numbers
- Take remainder of \(k \) modulo \(m \): \(h(k) = k \mod m \)
 - Allows you to map onto all of the slots in the table
 - Seems that we pick size of table so that it works well for hashing
- Do not use \(m \) as a power of 2
 - Otherwise just using the lowest-order bits of \(k \)
 - Make it depend on all of the bits of the key
 - Even using \(m = 2^p - 1 \) is problematic (see textbooks)
 - Prime not to close to a power of 2 seems to work out well
 - If \(n = 2000 \), and \(\alpha = 3 \) seems reasonable, can pick \(m = 701 \) since it is a prime near 2000/3 but not near any power of 2

Multiplication Method

- \(h(k) = \lfloor m(kA \mod 1) \rfloor \)
 - First multiply key \(k \) by a constant \(A \) in the range \(0 < A < 1 \) and extract the fraction part of \(kA \)
 - Then multiple it by \(m \) and take the floor of the result
- Advantage
 - Reduces dependency on \(m \)
Multiplication Method: Typical approach

- \(h(k) = \lfloor m(kA \mod 1) \rfloor \)
 - A constant: \(0 < A < 1 \) \(m \) is size of table
- Choose \(m \) be power of 2 (\(m = 2^p \))
 - Suppose word size of machine is \(w \) bits and \(k \) fits into a single word
 - Restrict \(A = s/2^w \) where \(s \) is integer \(0 < s < 2^w \) (so \(s = A \times 2^w \))
 - First multiply \(k \) by \(w \)-bit integer \(s \)
 - Result is \(2w \) bits long with value \(r_12^w + r_0 \)
 - Hash value is \(p \) most significant bits of \(r_0 \)

Example

- Some values of \(A \) work better than others
 - Knuth suggests \(A \approx (\sqrt{5}) - 1) / 2 = 0.6180339887 \)
- Example
 - \(k = 123456 \)
 - \(p = 14 \)
 - \(m = 2^{14} = 16384 \)
 - \(w = 32 \)
 - set \(A = s / 2^{32} \) closes to Knuth’s suggestion: \(A = 2654435769 / 2^{32} \)
 - \(k \times s = 32770602297664 = 76300 \times 2^{32} + 17612864 \)
 - so \(r_1 = 76300 \) and \(r_0 = 17612864 \)
 - most 14 significant bits of \(r_0 \) yield \(h(k) = 67 \)
Overview

• Hash Tables
• Chaining
• Hash Functions Chapter 11.3
⇒ Open Addressing (Chapter 11.5)

Open Addressing

• Do not use chaining to a linked-list for collisions
• Each table entry contains either an element of dynamic set or Nil
• When searching, systematically examine table slots until
 - find desired element
 - ascertain element is not in table
• Hash table can fill up
 - Load factor α cannot exceed 1
Insertion

- Successively probe table until you find an empty slot to put the key
- Rather than probe starting at 0 (would require $\Theta(n)$)
 - Sequence of probes depends on key being inserted
 - Function takes inputs key and probe number $h : U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$
 - Probe sequence for each key should be permutation of $\langle 0, 1, ..., m-1 \rangle$

```
HASH-INSERT(T, k)
1 i = 0
2 repeat
3 j = h(k, i)
4 if T[j] == NIL
5 T[j] = k
6 return j
7 else i = i + 1
8 until i == m
9 error "hash table overflow"
```

Deletion

- Deletion from an open address table is difficult
 - If you delete a key from slot i by changing its entry to Nil
 Won’t be able to find any key k during whose insertion we had probed slot i and found it occupied
- Can add a special value ‘Deleted’
 - When searching, viewed as having a value
 - When inserting, viewed as nil
- Search times no longer depend on load factor α
 - Open addressing not commonly used when deletion is needed
- Any advantage of chaining with a linked-list?
Uniform Hashing

- Uniform Hashing
 - Generalizes simple uniform hashing
 - Probe sequence of each key is equally likely to be any of the $m!$ permutations of $\langle 0, 1, \ldots, m - 1 \rangle$
 - Difficult to implement, usually approximated
 - Do guarantee that each table entry is included

Linear Probing

- Let $h^{' }: U \to \{0, 1, \ldots, m - 1\}$ be an ordinary hash function
 - Referred to as auxiliary hash function
 - Hash function: $h(k, i) = (h^{' } (k) + i) \mod m$
 - Initial probe determines sequence: only m distinct prob sequences

- Primary Clustering
 - If there are i slots filled in a role, odds are i/m that hash function will do initial hash to it, and cause cluster to grow by one
 - Will increase search times
Double Hashing

\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

- Initial probe depends on \(h_1 \)
- Successive probes are offset by \(h_2 \)
 - Now keys with same initial probe will not follow same probe sequence
- \(h_2(k) \) must be relatively prime with the hash-table size \(m \) for entire hash table to be search
 - Let \(m \) be a power of 2 and make \(h_2 \) always return odd numbers
 - Let \(m \) be prime and \(h_2 \) return a positive number less than \(m \)
- Either approach gives \(\Theta(m^2) \) probe sequences
 - We can use \(\Theta \), \(O \) and \(\Omega \) for any asymptotic analysis
Theorem 11.6

Given an open-address hash table with load factor $\alpha = n/m < 1$ (and no deletions) and uniform hashing assumption, expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$.

Intuition
- Always make a first probe: 1
- Make a second probe if first probe is unsuccessful α
- Make a third probe? $\alpha \times alpha$
- Make a fourth probe? α^3
- $\sum_{i=0}^{\infty} \alpha^i = 1/(1 - \alpha)$
- If load factor is .9, number of probes is 10.
- For chaining, $1 + \alpha$