Dictionary Operations

- Dictionary operations: insert, search, delete
 - Search means...
 - Was the key inserted into the table?
 - Set membership
 - To find the value of satellite data associated with the key
 - Should be efficient. Hopefully $O(1)$

Overview

- Hash Functions Chapter 11.3
- Chaining
- Open Addressing (Chapter 11.5)
- Hash Tables
Hash-Tables

- Reduce storage requirements but still maintain $O(1)$ access time
- When $|Y| \ll |\Omega|$
• Hash Functions (Chapter 11.3)
• Open Addressing (Chapter 11.5)
• Chaining

Overview

Collisions

• Two keys might hash to the same value
• Will hopefully map keys randomly across the hash table
• Hash function is deterministic: $h(k)$ is always same value
• Try to avoid collisions as much as possible
• Can happen since size of universe \ll size of hash table

Overview

Collisions
Efficiency of Dictionary Operations

- **Insert(T,x)** - Insert x at the head of list
 - If we do not check if x.key is already in list: \(O(1)\)

- **Search(T,k)** - Search for an element with key k in list
 - Worst case: proportional to length of list
 - \(O(n)\)

- **Delete(T,x)** - Delete x from list
 - \(O(1)\) time since we already have pointer to element and it is doubly-linked

Collision Resolution by Chaining

\(T\) (universe of keys)
\(K\) (actual keys)
\(k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8\)

\(n\) (number of keys)

\(x, y\) (actual keys)

\(T\) (universe of keys)

\(x\) (key of x)

\(y\) (key of y)

(left) Insert(x)

(right) Delete(T,x)
Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1 + \alpha)$ under simple uniform hashing assumption.

Proof:

Under assumption of simple uniform hashing, any key k not already stored in the table is equally likely to hash to any of the m slots. The expected number of elements examined in an unsuccessful search is α, and total time including computing $h(k)$ is $\Theta(1 + \alpha)$.

Load factor $\alpha = \frac{n}{m}$ where n is keys stored, and m is size of table.

Analysis of Hashing with Chaining

- Load factor $\alpha = \frac{n}{m}$ where n is keys stored, and m is size of table.
- Worse-case for search is $\Theta(n)$ for one linked list for all elements.
- Average-case performance of hashing depends on how well h distributes keys among m slots on average.
- Load factor $\alpha = \frac{n}{m}$ where n is keys stored, and m is size of table.

Assume hash of key is independent of keys already inserted.
Implications

- Load factor $\alpha = \frac{n}{m}$ where n is keys stored and m is size of table
- Search time depends on load factor
- If number of keys used is proportional to size of table
 + Search is $O(1)$ time

Successful Search

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a
successful search takes average-case time $O(\alpha + 1)$, under simple
uniform hashing.

Proof:
We assume element being searched for is equally likely to be any of the n
elements stored in the table.
How far x is from front of list?
How many other elements are in the same list?
How many other elements are equally likely to be x?

We have $\Theta(1 + \alpha)$ for the search.

To be $O(1 + \alpha)$ time,
What Makes a Good Hash Function?

- Make hash function independent of any patterns that might exist in data

 Good approach

+ Don't use suffixes or prefixes

- Hashing English words: be careful of the 'a' and 's'

 + Good hash function?

 - Hashing in range 0 ≤ k < l

 - If we know keys are random real numbers \(k \) independently and uniformly distributed

 - Domain knowledge might help in designing hash function

 - But really, know the probability distribution from which keys are drawn

 - Each key is equally likely to hash to any of the \(m \) slots regardless of what else has hashed

 Should satisfy assumption of simple uniform hashing

Overview

- Open Addressing (Chapter 11.5)
- Hash Functions (Chapter 11.3)
- Chaining
- Hash Tables
Multiplication Method

- First multiply key k by a constant A in the range $0 < A < 1$ and extract the fractional part of kA
- Then multiple it by m and take the floor of the result

$$h(k) = \lfloor m(kA \mod 1) \rfloor$$

Advantage

- Reduces dependency on m

Division Method

- Assume keys are in the set of natural numbers
- Otherwise find way to map them to numbers
- Take remainder of k modulo m: $h(k) = k \mod m$
- Otherwise find way to map them to numbers
- Prime near $2000/3$, not near any power of 2
- If $m = 2000$, and $0 = 0 \mod 2$, seems reasonable. Can pick $m = 701$ since 701 is a prime not close to a power of 2, seems to work well
- Even using $m = 2^p - 1$ is problematic (see textbooks)
- Better if depend on all of the bits of the key
- Otherwise just using the lowest-order bits of k
- Do not use m as a power of 2
- Seems that we pick size of table so that it works well for hashing
- Allows you to map onto all of the slots in the table
- Alternatively find way to map them to numbers
- Otherwise keys are in the set of natural numbers
Example

• Some values of \(A \) work better than others
 - Knuth suggests \(A \approx \left(\sqrt{5} - 1 \right) / 2 = 0.6180339887 \).

Example

\[k = 123456 \]
\[p = 14 \]
\[m = 2 \]
\[327700222976 = 16384 \]
\[w = 32 \]
\[A = s/2 \]
\[2^{32} = 0.6180339887 \approx \sqrt{5} - 1 \]

Some values of \(A \) work better than others.

Typical approach

• Choose \(m \) be power of 2 (\(m = 2^p \))
• Suppose word size of machine is \(m \) bits and \(k \) fits into a single word
• \(A = s/2^w \) where \(s \) is integer
• First multiple \(k \) by \(s \)-bit integer
 \[(s \cdot k) \bmod m \]
• Result is \(2^w \) bit value
• \(r_1 = 2^{32} = 2^{14} = 16384 \)
• \(r_0 = 123456 \)
• Hash value is \(p \) most significant bits of \(r_0 \times s \)

\[d = (\phi \bmod 1) \]
Open Addressing

- Hash table can fill up
- Each table entry contains either an element of dynamic set or "Nil"
- Load factor α cannot exceed 1
- When searching, systematically examine table slots until:
 - find desired element
 - ascertain element is not in table
- Do not use chaining to a linked-list for collisions

Overview

- Hash Functions
- Chapter 11.3
- Chaining
- Hash Tables
- Open Addressing (Chapter 11.5)
Deletion

Deletion from an open address table is difficult

- Open table not commonly used when deletion is needed
- Search times no longer depend on load factor α
- When insertion viewed as having a value
 - When searching, viewed as having a value
- Can add a special value 'Deleted'
 - When searching, viewed as having a value
 - When inserting, viewed as nil

- Search times no longer depend on load factor α
- Open table not commonly used when deletion is needed
- Any advantage of chaining with a linked-list?

Insertion

- Successively probe table until you find an empty slot to put the key
- Rather than probe starting at 0 (would require Θ(n) probes)
 - Hash function takes input key and probe number
 - Sequence of probes depends on key being inserted
 - Successful probe table until you find an empty slot to put the key

- Hash function takes input key and probe number
 - Sequence of probes depends on key being inserted
 - Rather than probe starting at 0 (would require Θ(n) probes)
 - Hash function takes input key and probe number
 - Sequence of probes depends on key being inserted
 - Rather than probe starting at 0 (would require Θ(n) probes)

- Hash function takes input key and probe number
 - Sequence of probes depends on key being inserted
 - Rather than probe starting at 0 (would require Θ(n) probes)
 - Hash function takes input key and probe number
 - Sequence of probes depends on key being inserted
 - Rather than probe starting at 0 (would require Θ(n) probes)
Linear Probing

Let $h': U \rightarrow \{0, 1, \ldots, m-1\}$ be an ordinary hash function. Referred to as auxiliary hash function.

Hash function: $h(k, i) = (h'(k) + i) \mod m$

Initial probe determines sequence: only m distinct probe sequences.

Primary Clustering

If there are i slots filled in a role, odds are i/m that hash function will do initial hash to it, and cause cluster to grow by one.

- Will increase search times.
- Initial hash to it and cause cluster to grow by one.

Uniform Hashing

- Uniform Hashing generalizes simple uniform hashing.
- Probe sequence of each key is equally likely to be any of the $m!$ permutations of $\{0, 1, \ldots, m-1\}$.
- Do not guarantee that each table entry is included.
- Difficult to implement, usually approximated.

Uniform Hashing

- Generalizes simple uniform hashing.
Double Hashing

\[h(k, i) = (h_1(k) + ih_2(k)) \mod m \]

• Initial probe depends on \(h_1 \)
• Successive probes are offset by \(h_2 \)

- We can use \(O(\sqrt{m}) \) and \(\Theta(m) \) probe sequences.
- Either approach gives \(\Theta(m^2) \) probe sequences.
- Let \(m \) be a prime number, \(h_2(k) \) is a positive number less than \(m \).
- Let \(m \) be a power of 2, and make \(h_2(k) \) always return odd numbers.
- Either approach gives \(\Theta(m^2) \) probe sequences.
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \) for entire hash table to be searched.
- Now keys with same initial probe will not follow same probe sequence.
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \).

- Let \(m \) be a power of 2 and make \(h_2(k) \) always return odd numbers.
- If \(m \) is prime, \(h_2(k) \) must be relatively prime to the hash-table size \(m \).
- \(h_2(k) \) must be relative prime to the hash-table size \(m \). For \(h_2(k) \) to be relatively prime to the hash-table size \(m \), \(h_2(k) \) must be relatively prime to \(m \).
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \).
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \).
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \).
- \(h_2(k) \) must be relatively prime to the hash-table size \(m \).

Quadratic Probing

\[h(k, i) = (h'_1(k) + ci + (\eta'h)\eta) \mod m \]

where \(h'_1(k) \) is an auxiliary hash function.

- \(c_1 \) and \(c_2 \) are positive auxiliary constants.
- \(\eta \) is an auxiliary hash function.
- \(h' \) is an auxiliary hash function.

- \(\Theta \), \(O \), and \(\Omega \) are used for asymptotic analysis.
Theorem 11.6
Given an open-address hash table with load factor $\alpha = n/m < 1$ (and no deletions) and uniform hashing, expected number of probes in an unsuccessful search is at most
\[\frac{1}{1 - \alpha}. \]

Inituition
Always make a first probe.
Make a second probe if first probe is unsuccessful.
Make a third probe if second probe is unsuccessful.
Make a fourth probe if third probe is unsuccessful.

For chaining, $1 + \alpha$ probes in an unsuccessful search is at most $1/1 - \alpha$.

Given an open-address hash table with load factor α, expected number of probes in an unsuccessful search is at most $1/1 - \alpha$.