Optimal Rod Cutting

- Cut rod into smaller rods to give best possible price

<table>
<thead>
<tr>
<th>length i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price p_i</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

- Different ways to split a pipe of length 4

- If we cut a rod of length n into k pieces each of i_1, i_2, ..., i_k

 $n = i_1 + i_2 + ... + i_k$
 Revenue = $p_{i_1} + p_{i_2} + ... + p_{i_k}$
How to Find Maximum Revenue

- Want to find the cuts that result in the most revenue
 - Let \(r_n \) be the maximum revenue of a pipe of length \(n \)
- Cannot do this with divide and conquer
 - Do not know what an optimal first cut is
- Brute force
 - Pipe of length \(n \) has \(n - 1 \) possible points where it can be cut
 + Price out each of the \(2^{n-1} \) different possible cuts

Optimal Substructure

- Alternatively, set up a recursive definition for max revenue
 - \(r_n = \max(p_n, r_{n-1} + r_{n-2}, r_2, r_{n-3}, \ldots, r_{n-1} + r_1) \)
 - To solve a bigger problem, solve smaller problems of same type, but of smaller sizes
 - The overall solution incorporates optimal solutions to the two related subproblems
 - Has optimal substructure: optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently
Another Version

- Another version:
 \[r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \ldots, r_{n-1} + r_1) \]
 \[= \max(p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \ldots, p_{n-1} + r_1) \]
 \[= \max_{i \leq i \leq n}(p_i + r_{n-i}) \]

- There will be a first cut to the rod
 + So do that first (rather than cutting in the middle of the rod)
 + Now just has one related subproblem
 + Just one recursion (can do through iteration)
- Still see the optimal substructure through the \(r_{n-1} \) term

Code and Running Time

CUT-ROD \((p, n)\)
\[
\begin{align*}
1 & \text{if } n == 0 \\
2 & \quad \text{return } 0 \\
3 & q = -\infty \\
4 & \text{for } i = 1 \text{ to } n \\
5 & \quad q = \max(q, p[i] + \text{CUT-ROD}(p, n - i)) \\
6 & \text{return } q \\
\end{align*}
\]

- Let \(T(n) \) be the total number of calls to CUT-ROD\((p,n)\)
 - \(T(0) = 1 \)
 + Include the initial call CUT-ROD\((p,0)\), which just returns 0
 - \(T(n) = 1 + \sum_{i=0}^{n-1} T(i) \)
 + Initial call + calling CUT-ROD on 0 to \(n-1 \)
Dynamic Programming

- Naive solution keeps recomputing subproblems it has already seen
- Instead, remember results for subproblems
 - Thus dynamic programming might use more memory
 - Time-memory trade-off
 - But might transform exponential algorithm to polynomial
 - Dynamic programming runs in polynomial time if
 - at most polynomial number of distinct subproblems
 - Each takes at most polynomial time
- Can do dynamic programming top-down or bottom-up

Running Time continued

\[T(0) = 1 \]
\[T(n) = 1 + \sum_{i=0}^{n-1} T(i) \]

- \[T(1) = 1 + T(0) = 2 \]
- \[T(2) = 1 + T(0) + T(1) = 4 \]
- \[T(3) = 1 + T(0) + T(1) + T(2) = 8 \]
- \[T(4) = T(3) + T(3) = 16 \]
- \[T(5) = T(4) + T(4) = 32 \]
- \[T(n) = 2^n \]
Bottom-up method

- Depends on some natural notion of ‘size’ of a subproblem
 - such that subproblems depend only on ‘smaller’ subproblems
- Sort problems by size and solve them smallest first
 - Use saved solutions for its subproblem
 - Save solution when done

Bottom-up method

- Running time?

Bottom-up with memoization

- Write procedure recursively
 - but modified to save the result of each subproblem
 - Usually in an array or hash-table
 - First check if already solved the subproblem

Cut-Rod(p, n)

1 if n == 0
2 return 0
3 q = −∞
4 for i = 1 to n
5 q = max(q, p[i] + Cut-Rod(p, n − i))
6 return q

* How can we add in memoization?

Bottom-up-Cut-Rod(p, n)

1 let r[0..n] be a new array
2 r[0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max(q, p[i] + r[j − i])
7 r[j] = q
8 return r[n]
Reconstructing a Solution

- We can find out the optimal price, but what are the optimal cuts?
- For string alignment, what is the actual alignment?