How fast is an algorithm?

• Important part of designing and analyzing an algorithm
 - its efficiency: how long does it take
• How do we time how long an algorithm takes?
 - Want to do this abstractly, so don’t worry about underlying architecture
 - e.g., analysis of a sort algorithm should be predictive of its performance
 on a cell phone, mac, or pc
Random-Access Machine (RAM)

- Assume a random-access machine (RAM)
 - No concurrent operations (one instruction executed after another)
 - Any memory location can be accessed in the same amount of time
- What is the instruction set?
 - Typical of what are found in real computers
 - Adding, multiplying, storing, loading values
 - Conditionals, subroutine calls and returns
 - Actions that can be done in a constant amount of time
 - Don’t include:
 - Sort: Not typically found in instructions, does not take constant time
 - Dictionary lookups (associate arrays), not typically found in instructions
 - Exponentiation?
 - Looping constructs?

Data in RAM model

- Integers and floats, but of a fixed sized
- Data should be of fixed size as well
- Don’t model memory hierarchy: caches, virtual memory, paging
Running Time

• Different instructions take different lengths
 - This difference will be drowned out when there are loops, recursion
 - There is a maximum amount of time, regardless of what the data is
 + Even in an if statement, with multiple conditions, there is a maximum time to execute it
 + If there is a subroutine call in the expression, that must be accounted for separately
 - Just assume its time is ‘1’

Size of Input

• Many algorithms work on input data, which can vary in size
 - Sorting a list
 - Parsing a sentence
 - Training a machine learning algorithm on data

• For many algorithms, effect of input size can be huge
 - Size of input usually determines size of loops, or depth of recursion
 - So determine running time with respect to size of input, n

• Different ways of measuring input size:
 - For sorting an array, size of array
 - For multiplying two numbers, number of bits
 - For a graph, number of nodes and edges
Running Time can Depend on Data

Insertion-Sort(A)

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for $j = 2$ to $A.length$</td>
<td>c_1</td>
<td>n</td>
</tr>
<tr>
<td>2</td>
<td>key = $A[j]$</td>
<td>c_2</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>3</td>
<td>// Insert $A[j]$ into the sorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sequence $A[1..j-1]$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$i = j - 1$</td>
<td>c_4</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>5</td>
<td>while $i > 0$ and $A[i] > key$</td>
<td>c_5</td>
<td>$\sum_{j=2}^{n} t_j$</td>
</tr>
<tr>
<td>6</td>
<td>$A[i+1] = A[i]$</td>
<td>c_6</td>
<td>$\sum_{j=2}^{n} (t_j - 1)$</td>
</tr>
<tr>
<td>7</td>
<td>$i = i - 1$</td>
<td>c_7</td>
<td>$\sum_{j=2}^{n} t_j$</td>
</tr>
<tr>
<td>8</td>
<td>$A[i+1] = key$</td>
<td>c_8</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

- t_j: number of times while loop test in line 5 is executed for value of j
 + If input is sorted, t_j is 1. If input is in reverse order, $t_j = j$
 + On average, will need to go halfway back in the list $t_j = j/2$

- Why is the while and for statements given a time one greater?

Worst-case and Average-case Analysis

- Can look at average case or worst-case performance
- Textbook emphasizes worse case running time:
 - Gives an upper bound for any input
 - Worst case might occur fairly often
 + Searching a database and data is not present
 - Average case is often roughly as bad as the worse case
Order of Growth

• Quantify the running time as the input size grows
 - Say worst case running time is $an^2 + bn + c$; where a, b, c are constants
 - Interested in what happens as n increases
 + First term dominates!
 + Other two terms become noise
 + Can even ignore constant a
 + Since not effecting the rate of growth

• Worst case running time for insertion sort: $\Theta(n^2)$

Overview

• Chapter 2 Section 2: Analyzing Algorithms
 ⇒ Chapter 3: Growth of Functions
• Chapter 12: Binary Search Trees
Asymptotic Notation

• Running time versus size of data using asymptotic analysis
 - Focus on what happens to a function as \(n \) gets bigger and bigger
 - Function can represent anything: worst case running time of algorithm, or how much space it needs
 - Example: \(an^2 + bn + c \)

Theta Notation

• For \(f(n) \)
 - Is there a function \(g(n) \)
 - Constants \(c_1, c_2, n_0 \)
 - \(c_1 g(n) \leq f(n) \leq c_2 g(n) \)
 + for \(n \geq n_0 \)
 - Then \(f(n) = \Theta(g(n)) \)
More formally

$$\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that}$$
$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}$$

• Note:
 - $\Theta(g(n))$ is a set of functions that $g(n)$ can characterize
 + Should write $f(n) \in \Theta(g(n))$
 - $g(n)$ characterizes them for any n greater than some n_0
 + Not interested in small values of n
 - $g(n)$ characterizes them within constant bounds
 - c_1, c_2, n_0 can depend on the f
 - We say $g(n)$ is an asymptotically tight bound for $f(n)$

Example

• Show $\frac{1}{2}n^2 - 3n = \Theta(n^2)$
• Determine $c_1, c_2, n_0 > 0$ s.t. that $c_1 n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2 n^2$ for $n \geq n_0$
 - Dividing by n^2 yields: $c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$
 - LH inequality: to make $c_1 > 0$, set $n \geq 7$ and so set $c_1 = \frac{1}{14}$
 - RH inequality: holds for any $n \geq 1$ with $c_2 = \frac{1}{2}$
• We can prove it is $\Theta(3n^2)$ or $\Theta(n^2 + 2n)$
 - Want the simplest form for $\Theta(g(n))$
• Constant time algorithms: $\Theta(n^0)$, which can be written as $\Theta(1)$
More on Big O

- For Θ, needed to be clear that it was worst case time (or average time, or best time), since might have different bounds

- Since Big O is just an upper bound, when we use it to upper bound worst-case, it is upper bounding algorithm for any data
 - A bit of an abuse of terminology: each different data of input size n might have a different function for its running time
 - But all of the functions can be bounded above by $O(g(n))$
 - Can say running time (no modifier) of algorithm is $O(g(n))$
Omega

\[\Omega(g(n)) = \{f(n) : \text{there exists positive constants } c \text{ and } n_0 \text{ s.t.} \]
\[0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\]

Theorem: 3.1

For any two functions \(f(n) \) and \(g(n) \), we have \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)

- Same comments about \(O \) apply:
 - Lower bound can be specified regardless of data
 - Running time is \(O(n^2) \) and \(\Omega(n) \)
 - Worst case running time is \(\Theta(n^2) \), best case \(\Theta(n) \)
def InOrderWalk(self):
 if self.left is not None:
 self.left.InOrderWalk()
 print self.key
 if self.right is not None:
 self.right.InOrderWalk()

Theorem 12.1
If x is the root of a tree with n nodes, then InorderTreeWalk(x) takes $\Theta(n)$ time.

• Let $T(n)$ denote time taken by InorderTreeWalk when called on tree with n nodes
• Lower bound:
 - Since it must visit all nodes of the tree, $T(n) = \Omega(n)$

Upper Bound

• Prove by induction that $T(n) = O(n)$
 (textbook refers to this as substitution method).
 - Need more exact formula of its time than just $O(n)$. Let’s guess its time
• When called on a leaf, takes constant time $T(1) = c$
 for some constant $c > 0$
• How much time will it take when it is not a leaf
 - including time spent on initiating recursive call
 - excluding time spent in the recursive call
 - Will be a constant amount of time, say d and $d \geq c$
Continued

- When called on a tree with \(n \) nodes
 - It will split the tree into two parts:
 + right tree \(k \) nodes, \(0 \leq k \leq n - 1 \) (might be an empty subtree)
 + left tree \(n - k - 1 \) nodes
 - \(T(n) \leq T(k) + T(n - k - 1) + d \)

- Assume \(T(n) \leq dn \)
 - Holds for \(T(1) \)
 - Assume true for \(1 \leq j < n \), prove true for \(n \)
 \[
 T(n) \leq T(k) + T(n - k - 1) + d \\
 \leq dk + d(n - k - 1) + d \quad \text{(by induction assumption)} \\
 \leq dn
 \]

\textbf{Theorem 12.2:}

Search runs in \(O(h) \) time on a binary tree of height \(h \)

- What is the lower bound?
 - \(\Omega(1) \)
 - So it does not have a \(\Theta \)
def Insert(self, z):
 y = None
 x = self.root
 while x is not None:
 y = x
 if z.key < x.key:
 x = x.left
 else:
 x = x.right
 z.p = y
 if y is None:
 self.root = z
 elif z.key < y.key:
 y.left = z
 else:
 y.right = z

Time $O(h)$