Overview

⇒ Binary Search Tree (Chapter 12)
• Querying a Binary Search Tree
• Insertion and Deletion

Binary Search Tree Data Structure

• For dynamic set where keys are from totally ordered set
 - And we care about the ordering
• Can support search, min, max, pred, succ, insert and delete
 - Binary search tree lets these operations be done fast
Binary Tree

• Uses binary tree structure of Chapter 10
 - parent, left child, right child, key

```python
class Node:
    def __init__(self, k):
        self.key = k
        self.left = None
        self.right = None
        self.parent = None
```

• Code to manually build a tree

```python
top = Node(6)
top.left = Node(5)
top.left.left = Node(2)
top.left.right = Node(5)
top.right = Node(7)
top.right.right = Node(8)
```

* Do we need a Tree class?

Binary Search Tree Property

Binary Search-tree Property: Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $y.key \leq x.key$. If y is a node in the right subtree of x, then $y.key \geq x.key$.

![Diagram](a) ![Diagram](b)
Inorder Tree Walk

- Can print an ordered list of keys by doing an *inorder* tree walk
 - Versus *pre-order* or *post-order*
 + Similar to infix $5+2$, prefix $+(5,2)$ and postfix $(5,2)+$
 - Print left tree, print key, print right tree

```python
class Node:
    ...
    def InOrderWalk(self):
        if self.left is not None:
            self.left.InOrderWalk()
        print self.key
        if self.right is not None:
            self.right.InOrderWalk()

top.InOrderWalk()
```

* Can it be used to print subtrees?

Versus Textbook Code

- Here is our method:
  ```python
class Node:
    ...
    def InOrderWalk(self):
        if self.left is not None:
            self.left.InOrderWalk()
        print self.key
        if self.right is not None:
            self.right.InOrderWalk()
  ```

- Here is textbook code (function)
  ```python
def InOrderWalk(node):
    if node is not None:
        InOrderWalk(node.left)
        print self.key
        InOrderWalk(node.right)
  ```

* Why is the placement of the 'if' different?
Overview

- Binary Search Tree (Chapter 12)
 ⇒ Querying a Binary Search Tree
- Insertion and Deletion

Search

- Textbook version (as a function):
  ```python
def TreeSearch(x, k):
    if x is None or k == x.key:
      return x
    if k < x.key:
      return TreeSearch(x.left, k)
    else:
      return TreeSearch(x.right, k)
  ```

- As a method:
  ```python
def Search(self, k):
    if k == self.key:
      return self
    if k < self.key and self.left is not None:
      return self.left.Search(k)
    if k > self.key and self.right is not None:
      return self.right.Search(k)
    return None
  ```

 * Why did we shorten the name of the method?
Iterative Search

• Can write this as an iterative routine
 - Removes overhead of subroutine calls

```python
def IterativeSearch(self: k):
    x = self
    while x is not None and k != x.key:
        if k < x.key:
            x = x.left
        else:
            x = x.right
    return x
```

* Why introduce a new variable as opposed to using self?
* Does self's value change as x's value is changing?
* What is the difference between is not None and != None?
Must go through each point once, even if duplicates

Succ and Pred

- Need to find first node above \(x \). That we are \(x \)'s left ancestor of
- If \(x \).right is None
- All nodes under \(x \).right guaranteed to be \(\leq \) anything going up the tree
- If \(x \).right is not None

  ```
  def Succ(self):
      x = self
      if x.right is not None:
          return x.right.min()
      y = x.parent
      while y is not None and x == y.right:
          x = y
          y = y.parent
      return y
  ```

Textbook

```
// Min and Max
```
Overview

- Binary Search Tree (Chapter 12)
- Querying a Binary Search Tree
 ⇒ Insertion and Deletion

Insertion

- Insert z while keeping the binary search structure
- Turns out that we can always insert by adding it as a new leaf
- Let a, b be in tree, $b = \text{succ}(a)$, and $a.key \leq z.key \leq b.key$
 - If $a.right$ is null, add z at $a.right$
 + z will then come right after a in an intree-walk since z has no left child
 - If $a.right$ is not null
 + b must be in $a.right$ branch,
 and must be leftmost node in branch
 + so $b.left$ will be empty
 + add z at $b.left$
 + So we can add it to $b.left$
Proof of Correctness

• Rather than search for a and b nodes
 - We will search for an empty node to insert z into
 - Similar to our search code

- Better to do this on a tree (to allow inserting into an empty tree)

```python
class Tree:
    def __init__(self):
        self.root = None
    def Insert(self, new):
        y = None
        x = self.root
        while x is not None:
            y = x
            if new.key < x.key:
                x = x.left
            else:
                x = x.right
        new.parent = y
        if y is None:
            self.root = new
        elif new.key < y.key:
            y.left = new
        else:
            y.right = new
```
Deletion - Simple Cases (a-c)

(a) Want to remove node z
- Binary tree property: make sure you don’t change InorderTreeWalk
- Everything below q is either all $\geq q$ or $\leq q$
 + No need to worry about who is q’s new child

(b) Want to remove node z
(c) Want to remove node z

Deletion - Complex Case - d

- Move r into z’s spot
- Find minimum node under r, call it y
- Make l into y’s left child

* Will the new tree be less tall than the original tree?
A better version of Case d

- Is new tree guaranteed to be no higher than original tree?
- Might it even be shorter?

Code: Transplant

- Must be a tree method since we might be deleting the root node
- Transplant: replaces subtree at u with v

```python
def Transplant(self, u, v):
    if u.parent == None:
        self.root = v
    elif u == u.parent.left:
        u.parent.left = v
    else:
        u.parent.right = v
    if v is not None:
        v.parent = u.parent
```
def Delete(self,z):
 if z.left is None:
 self.Transplant(z,z.right)
 elif z.right is None:
 self.Transplant(z,z.left)
 else:
 y = z.right.Min()
 if y.parent != z:
 self.Transplant(y,y.right)
 y.right = z.right
 y.right.parent = y
 self.Transplant(z,y)
 y.left = z.left
 y.left.parent = y