Making Conversational Vowels More Clear

Seyed Hamidreza Mohammadi
Alexander Kain
Jan van Santen

Center for Spoken Language Understanding
Background

• 28 million in U.S. have hearing loss
 • understanding speech in noise is difficult
• primary strategy is hearing aid
 • frequency band amplification and shifting
 • dynamic processing
• can we do more?
Clear speech

• speakers adopt special *clear* speech style (vs. *conversational*) when talking to impaired listeners

 • due to hearing loss, background noise, or both

• studies have shown the increased intelligibility of clear speech in many conditions [Picheny 1985, Ferguson 2002 & 2004]

• speakers make CLR speech in different ways, and some can not produce it [Ferguson 1999]
CLR speech: prosody

- fundamental frequency with increased range and mean
- increased consonant-vowel energy ratio
- prolonged phoneme durations
- longer pauses
- decreased speaking rate
CLR speech: spectrum

- expanded vowel formant frequency space
- overall higher energy in the 1000-3150 Hz frequency band
- more aspirated stops and fewer alveolar flaps
Intelligibility features

• previously, we investigated the degree to which various acoustic features cause an increase in speech intelligibility [Kain 2008]

 • hybridized CNV and CLR speech

 • energy trajectory, F0 trajectory, phoneme durations, short-term spectra, pauses

 • perceptual intelligibility testing
Hybridization results

- For one male en_US speaker,
 - CNV = 72%
 - CLR = 85%
 - CNV with CLR spectrum and duration = 82%
 - energy trajectory, F0 trajectory, and pauses not relevant
 - duration alone was not statistically significant
• can we automatically increase the intelligibility of CNV vowels?
 • use a voice conversion method that maps CNV spectra towards CLR spectra
 • no duration modeling for now
 • speaker-dependent
Outline

- data corpus
- formant space analysis
- LSF space analysis
- perceptual experiment
- conclusion & future work
Corpus

- recorded a corpus of 242 en_US CVC words, uttered by one male speaker
 - each word recorded in CNV and CLR styles, and two renditions (242 x 2 x 2=968 tokens)
 - for CNV speech, the speaker was asked to speak as if talking with a friend at a natural pace
 - for CLR speech, the speaker was asked to “enunciate consonants more carefully and with greater effort than in CNV speech and avoid slurring words together”
Corpus

- CVC words were located in a neutral carrier phrase immediately following the phoneme /d/:
 - “I know the meaning of the word moon”
- phonetically labeled by hand
- formants for the last word are extracted and hand corrected
CNV & CLR Formants

CNV

CLR
Mapping CNV to CLR

CNV to CLR Consistency
Consistency measure

- determinant of the weighted covariance matrix (volume)

\[\text{WeightedCov}_{x'} = \frac{1}{\sum w_{i,x'}} \sum_{i=1}^{N} w_{i,x'}(x_i - \bar{x})(y_i - \bar{y}) \]

\[w_{i,x'} = \exp\left(\frac{-\|x_i - x'\|^2}{2\sigma^2}\right) \]
Mapping

- frame-by-frame mapping of CNV F1-F2 formant feature sequences of vowel trajectories, using a joint-density Gaussian mixture model (JDGMM) [Kain 1998]
- divided all available data into training (218 vowels) and test (24 vowels) sets using a 10-fold cross-validation scheme
Mapping Function

Actual Mapping

JDGMM Mapping, Q=8
Experiment

Table 1: Average RMSE errors in Hz

<table>
<thead>
<tr>
<th>Method</th>
<th>test</th>
<th>train</th>
</tr>
</thead>
<tbody>
<tr>
<td>no mapping</td>
<td>193.84</td>
<td>194.01</td>
</tr>
<tr>
<td>JDGMM $Q=8$, unsupervised</td>
<td>137.98</td>
<td>127.70</td>
</tr>
<tr>
<td>JDGMM $Q=8$, supervised</td>
<td>132.44</td>
<td>125.17</td>
</tr>
</tbody>
</table>
LSF domain

- repeated analysis for Line Spectral Frequencies
- 18 LSF coefficients
- for visualization purposes ONLY, LSFs are reduced to 2 dimension using PCA
CNV & CLR LSFs

CNV

CLR
Mapping CNV to CLR

CNV to CLR Consistency
Mapping

Actual Mapping

JDGMM Mapping, Q=3
Experiments

Table 2: Average LSD errors in dB

<table>
<thead>
<tr>
<th>Method</th>
<th>test</th>
<th>train</th>
</tr>
</thead>
<tbody>
<tr>
<td>no mapping</td>
<td>9.60</td>
<td>9.59</td>
</tr>
<tr>
<td>JDGMM $Q=3$</td>
<td>5.10</td>
<td>4.53</td>
</tr>
<tr>
<td>JDGMM $Q=3$, PCA=12</td>
<td>5.18</td>
<td>4.84</td>
</tr>
</tbody>
</table>
Perceptual experiment

• seven conditions
 1: CNV, 2: CLR,
 3: LSF-vocoded CNV (VCNV),
 4: LSF-vocoded CLR (VCLR),
 5: CNV with mapped spectrum (MAP-S),
 6: CNV with CLR “oracle” duration (MAP-D), and
 7: CNV with mapped spectrum and CLR “oracle” duration (MAP-SD)

• total of 49 test words x 7 conditions = 343 stimuli
 • loudness-normalized via rmsA
 • added 12-talker babble noise with SNR of +3 dB and -2 dB
Listeners

- 98 Amazon Mechanical Turk Listeners
 - approval ratings of at least 90% and located in the U.S.
 - asked participant to “listen to the word in noise and select one of the vowel classes based on what you heard”
 - clean reference samples were available at any time
Table 3: Intelligibility rate of each condition

<table>
<thead>
<tr>
<th>Configuration</th>
<th>-2 dB SNR</th>
<th>$+3$ dB SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR</td>
<td>74.92%</td>
<td>80.46%</td>
</tr>
<tr>
<td>VCLR</td>
<td>71.42%</td>
<td>78.71%</td>
</tr>
<tr>
<td>MAP-SD</td>
<td>56.26%*</td>
<td>58.60%†</td>
</tr>
<tr>
<td>MAP-S</td>
<td>49.85%</td>
<td>59.76%†</td>
</tr>
<tr>
<td>MAP-D</td>
<td>48.10%</td>
<td>56.26%</td>
</tr>
<tr>
<td>VCNV</td>
<td>45.18%</td>
<td>52.47%</td>
</tr>
<tr>
<td>CNV</td>
<td>45.48%</td>
<td>56.55%</td>
</tr>
</tbody>
</table>
Conclusion

- analyzed CNV and CLR data in formant frequency domain and LSF domain
- trained a mapping function for converting CNV vowels to resemble CLR vowels
- results show a modest increase in intelligibility
Future work

• use a duration model
• this experiment is for one speaker only – can the mapping be speaker-independent?
• use a higher quality vocoder and a more sophisticated mapping method
Thank you!