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Abstract
Recently, researchers have begun to investigate Deep Neural
Network (DNN) architectures as mapping functions in voice
conversion systems. In this study, we propose a novel Stacked-
Joint-Autoencoder (SJAE) architecture, which aims to find a
common encoding of parallel source and target features. The
SJAE is initialized from a Stacked-Autoencoder (SAE) that has
been trained on a large general-purpose speech database. We
also propose to train the SJAE using unrelated speakers that are
similar to the source and target speaker, instead of using only
the source and target speakers. The final DNN is constructed
from the source-encoding part and the target-decoding part of
the SJAE, and then fine-tuned using back-propagation. The use
of this semi-supervised training approach allows us to use mul-
tiple frames during mapping, since we have previously learned
the general structure of the acoustic space and also the general
structure of similar source-target speaker mappings. We train
two speaker conversions and compare several system configu-
rations objectively and subjectively while varying the number
of available training sentences. The results show that each of
the individual contributions of SAE, SJAE, and using unrelated
speakers to initialize the mapping function increases conversion
performance.
Index Terms: voice conversion, deep neural network, semi-
supervised learning, pre-training

1. Introduction
The task of Voice Conversion (VC) is to convert speech from a
source speaker to sound similar to that of a target speaker’s. Var-
ious approaches have been proposed; most commonly, a gener-
ative approach analyzes speech frame-by-frame and then maps
extracted source speaker features towards target speaker fea-
tures, with a subsequent synthesis procedure [1]. The mapping
is achieved using a non-linear regression function, which must
be trained on aligned source and target features from existing
parallel or artificially parallelized [2] speech.

Recently, various Artificial Neural Networks (ANN) archi-
tectures have been proposed for the task of feature mapping in
the context of VC: Deep Neural Networks (DNNs) [3], ANNs
with rectified linear unit activation functions [4], bidirectional
associative memory (a two-layer feedback neural network) [5],
General Regression Neural Networks [6], and restricted Boltz-
man machines and their variations [7, 8, 9, 10]. Three-layered
DNNs have achieved improvements in both quality and accu-
racy over Gaussian Mixture Models (GMMs) when trained on
40 training sentences [3].

This material is based upon work supported by the National Sci-
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Usually, only a small number of utterances are available
during training. Up to relatively recently, this has restricted the
use of higher-dimensional data during learning of the transfor-
mation mapping, and thus mapping features have traditionally
been composed from only one frame of speech. However, us-
ing information from multiple frames could allow for modeling
of context. In a first approach to solve this problem, relatively
compact dynamic features were appended to the frame [11, 12],
or an explicit trajectory model was used [13]. In another ap-
proach, Xie et al. [14] proposed a sequence error minimiza-
tion instead of a frame error minimization to train a neural net-
work. In other attempts, researchers show improvements when
using a recurrent network structure which allows modeling of
sequences [15, 16, 17]. Finally, Chen et al. [18] proposed to
combine multiple frames during conversion. In this study, we
also utilize multiple frames during conversion to model context.
However, to combat the inherent problems stemming from the
significant increase in feature dimensionality, we propose to use
a large number of utterances from speakers other than the source
and target speaker during training of the mapping function.

In our previous study [19], we proposed to use a general-
purpose database as part of DNN training. We showed that
when using a large amount of unrelated speakers’ data during
unsupervised training we needed fewer parallel utterances dur-
ing supervised training to achieve similar performance. This is
because the network learned the acoustic structure of the speech
features. In this study, we go one step further, and use pairs of
speaker’s data that are similar to the source and target speaker
pair to learn the general structure of the mapping, in addition to
using multiple frames. Specifically, our semi-supervised train-
ing consists of (1) learning the structure of multiple-frame spec-
tral features, by training a Stacked Autoencoder (SAE) on a
general-purposes database. Then, (2) we learn the general struc-
ture of the mapping between speaker-pairs that are similar to
the source and target speakers, respectively, by creating a novel
Stacked-Joint-AE (SJAE) from the existing SAE that aims to
reconstruct source and target feature vectors while keeping the
generated encodings in the middle layer identical. These joint
structures have shown to be a useful tool [20, 21]. Finally, we
(3) construct a DNN from the SJAE and fine-tune it for the final
mapping between source and target parameters. Note that in our
work we never utilize class labels, and we refer to learning as
supervised when parallel data are available; thus, the first step
of our training procedure is considered unsupervised, whereas
the remaining two steps are considered supervised.

We review the network architectures used in this work in
Section 2. We then detail our voice conversion experiments, in-
cluding system configurations and their objective and subjective
evaluation, in Section 3. Finally, we conclude in Section 4.



2. Network Architectures
In this section, we first briefly review the basic concepts of
Artificial Neural Networks (ANNs) and Autoencoders, and
then present a novel Joint-Autoencoder. We will use the
following notation: Let XN×D = [x1, ...,xN ]>, where
x = [x1, . . . , xD]>, represent N examples of D-dimensional
source feature training vectors. Using a parallelization method
(e. g. time-alignment and subsequent interpolation), we can ob-
tain the associated matrix YN×D = [y1, ...,yN ]>, where
y = [y1, . . . , yD]>, representing target feature training vectors.

2.1. Artificial Neural Network
An Artificial Neural Networks (ANN) consists of K layers,
where the kth layer performs the transformation

hk+1 = fk(Wkhk + bk), (1)

where hk, hk+1, Wk, bk, are the input, output, weights, and
bias of the current layer, respectively, and fk is an activation
function. By convention, the first layer is called the input layer
(with h1 = x), the last layer is called the output layer (with
ŷ = hK+1), and the middle layers are called the hidden layers.
The objective is to minimize a cost function, such as the mean
squared error E = ‖y − ŷ‖2. The weights and biases can be
trained by minimizing the error function using stochastic gradi-
ent descent and back-propagation, which propagates the errors
at the output layer to the previous layers.

The number (K) and the size (dimensionalities of W and
b) of the layers are selected empirically based on the size, di-
mensionality, and distribution of the data. ANNs with three
or more layers are called Deep Neural Networks (DNNs). Re-
cently, deep architectures have been shown to have the ability
to extract highly meaningful patterns from the data. However,
as the number of layers grow, it becomes more difficult to train
the network since the back-propagated error diminishes layer
by layer [22].

2.2. Autoencoder
ANNs are usually trained with a supervised learning technique,
wherein we have to know the output classes or values in addition
to input values. An Autoencoder (AE) is a special kind of neural
network that uses an unsupervised learning technique, i. e. we
only need to know the input values. In an AE, the output val-
ues are set to be the same as the input values and thus the error
criterion becomes a reconstruction criterion. With an appropri-
ate architecture, an AE can learn an efficient lower-dimensional
encoding of the data. This unsupervised learning technique has
proven to be effective for determining initial network weight
values of a DNN before regular supervised training.

A simple AE has an architecture identical to a two-layered
ANN. The first layer is usually called the encoding layer and
the second layer is called the decoding layer. The encoding
part of a simple AE maps the input to an intermediate (hidden)
representation. The decoding part of an AE reconstructs the
(visible) input from the intermediate representation. The first
and second layers’ weights are usually tied, i. e.

h = fhid(Wx+ bhid),

x̂ = fvis(W
>h+ bvis).

(2)
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Figure 1: SAE, SJAE, and DNN architectures

During AE training in its simplest form, weights are op-
timized to minimize the average reconstruction error E =
‖x− x̂‖2.

A deeper AE architecture and the accompanying increase
in coding efficiency can be achieved by training multiple AEs
layer-by-layer and stacking them [23], using the following ap-
proach: The first AE is trained on the input. The input is then
encoded and passed to the next AE, which is trained on these en-
coded values, and so on. Finally, the AEs are stacked together
to form a stacked-AE (SAE).

2.3. Joint-Autoencoder
We can train two separate SAEs to optimally perform on the
source and target speakers’ features, respectively. However, the



source encodings and the target encodings are likely to be un-
correlated. Hence we will need another mapping to map the
encodings from the source speaker to the encodings of the tar-
get speaker [9, 19]. Here we propose to maximize the similarity
of the encoding values, and thus reduce the complexity of the
extra mapping, by way of a Joint-Autoencoder (JAE) , i. e.

hx = fhid(Wx+ bhid),

hy = fhid(Vy + chid),

x̂ = fvis(W
>hx + bvis),

ŷ = fvis(V
>hy + cvis),

(3)

where V and c are the weights and biases responsible for re-
constructing the target. We modify the cost function to include
the mean squared error between the encodings:

E = α ‖x− x̂‖2 + α ‖y − ŷ‖2 + (1− α) ‖hx − hy‖2 (4)

where α controls the tradeoff. The value of α can be empiri-
cally determined based on the dimensionalities of x, y, and the
coding layer. Similar to AEs, JAEs can also be stacked together
for the purposes of initializing a DNN. The first JAE is trained
on source and target parameters, which are then encoded. The
same process is done for the encoded source and target features
to train the second JAE. The process is iterated until the de-
sired depth is obtained, at which point the encoding parts of the
source autoencoder are appended together to form the encoding
part of the stacked-joint-autoencoder (SJAE), and the decoding
parts of the target autoencoder are stacked together to form the
decoding part of the SJAE. The final DNN is initialized by ap-
pending the encoding and the decoding parts together. The pro-
posed architecture has the advantage of greedy layer-by-layer
training of the network layers, thus addressing the vanishing
gradient problem. Also it initializes all the DNN layers indepen-
dently of each other, helping the back-propagation start from a
better initial state. The proposed DNN training scheme is shown
in Figure 1.

3. Experiment
3.1. Training
For the VC experiment, we used the CMU Arctic corpus. We
considered two inter-gender conversions, namely CLB→SLT
(females), and RMS→BDL (males). For each speaker, we se-
lected 100, 50, and 5 parallel training, test, and validation sen-
tences, respectively. Sentences were time-aligned using Dy-
namic Time Warping (DTW).

As speech features, we used 24thorder MCEPs (excluding
the 0th coefficient), extracted using the SPTK toolkit [24] with
10 ms frame shift and 25 ms frame size. Based on a study of
phone recognition on the TIMIT database [25], we chose to
model 15 frames (the current frame plus 7 preceding and fol-
lowing frames) for our multi-frame experiments, for a total of
15×24=360 features per frame.

We considered several system configurations, listed in Ta-
ble 1. Config-0 represents a classic baseline method [26].
Config-1 is designed to evaluate the efficacy of a DNN without
prior unsupervised training [3]. Config-2 explores the effective-
ness of unsupervised pre-training using the SAE and consider-
ing multiple frames. The key idea behind Config-3 is to regard
the SAE as a feature extractor, whose features are subsequently
mapped by an ANN [19]. Config-4 includes the creation of
a SJAE with α = 0.5 prior to back-propagation. The addi-
tional effect of pre-training the SJAE using similar speaker’s

data (“SJAE-20”) is explored in Config-5. Finally, Config-6 is
identical to Config-5 except we use only one frame. Comparing
1 and 6 shows the effects of semi-supervised learning versus
supervised learning. Comparing 5 and 6 shows the effects of
considering 15 frames versus only one frame. Comparing 2 and
5 shows the effect of pre-training using similar speakers.

For configurations involving the SAE, we randomly se-
lected 80% of the 630 speakers for training, 10% for validation
and 10% for testing purposes. We trained various de-noising
SAE architectures and selected the best-performing one. All ac-
tivation functions were tangent hyperbolic, except for the first-
level AE, for which we selected g of Equation 3 to be linear.

For Configurations 5 and 6, we searched for the 20 most
similar speakers among the TIMIT speakers in the training par-
tition, for both source and target speakers, respectively, using a
standard speaker identification approach [27]. Two parallel sen-
tences for each of the 20 “similar” speaker-pairs were available.
The utterances were time-aligned using DTW, and then used to
pre-train the SJAE.

3.2. Objective Evaluation
For Configurations 1–6, we selected the best DNN architectures
from multiple 4-layer architectures with different hidden layer
sizes; for example, the final DNN of Configuration 5 has layer
sizes [360N 1000N 500N 1000N 360L], where N and L stand
for non-linear and linear activation function. The correspond-
ing SAE of this DNN produced a mel-cepstral distortion [24]
between original and reconstructed features of 0.99 dB. The
average reconstruction error of SJAEs on CLB and SLT was
1.14 dB. We trained the CLB→SLT mapping using different
number of sentences, ranging from 1 to 100. The results are
shown in Table 2. As an upper bound, we measured the aver-
age distortion between the original source and target speakers’
mel-cepstrum at 7.76 dB. As a lower bound, past experiences
have shown that different renditions of the same sentence by the
same speaker result in an average distortion of approximately
5.30 dB. The results are shown in Figure 2.

3.3. Subjective Evaluation
To subjectively evaluate voice conversion performance, we per-
formed two perceptual tests: the first test measured speech qual-
ity and the second test measured conversion accuracy (also re-
ferred to as speaker similarity between conversion and target).
The listening experiments were carried out using Amazon Me-
chanical Turk, with participants who had approval ratings of at
least 90% and were located in North America. Both percep-
tual tests used three trivial-to-judge sentence pairs, added to the
experiment to filter out any unreliable listeners.

We used two training sets for subjective evaluation: a large
set, which included 100 training utterances, and a small set,
which included 5 training utterances.

3.3.1. Speech Quality Test
To evaluate the speech quality of the converted utterances, we
conducted a Comparative Mean Opinion Score (CMOS) test. In
this test, listeners heard two utterances A and B with the same
content and the same speaker but in two different conditions,
and are then asked to indicate wether they thought B was better
or worse than A, using a five-point scale comprised of +2 (much
better), +1 (somewhat better), 0 (same), −1 (somewhat worse),
−2 (much worse). It is worthy to note that the two conditions
to be compared differed in exactly one aspect (either different
mapping methods or different number of training utterances).
The experiment was administered to 20 listeners with each lis-



# frames SAE ANN SJAE-20 SJAE map
0 1 GMM
1 1 DNN
2 15 X DNN
3 15 X X DNN
4 15 X X DNN
5 15 X X X DNN
6 1 X X X DNN

Table 1: System configurations
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Figure 2: Mel-cepstral distortion between converted and target
features (in dB).

tener judging 40 sentence pairs.
Listeners’ preference scores are shown in Figure 3. For

both the large and small sets, pre-trained DNNs performed bet-
ter than the baseline DNN (t-tests for both 6L vs. 1L and 6S
vs. 1S were significant). In addition, the baseline DNN trained
with the large set performed significantly better, compared to all
DNNs trained with the small set (1L vs. 6S and 1L vs. 1S).

3.3.2. Conversion Accuracy Test
To evaluate the conversion accuracy of the converted utterances,
we conducted a same-different speaker similarity test [28]. In
this test, listeners heard two stimuli A and B with different con-
tent, and were then asked to indicate wether they thought that
A and B were spoken by the same, or by two different speakers,
using a five-point scale comprised of +2 (definitely same), +1
(probably same), 0 (unsure), −1 (probably different), and −2
(definitely different). One of the stimuli in each pair was cre-
ated by one of the four mapping methods, and the other stim-
ulus was a purely MCEP-vocoded condition, used as the refer-
ence speaker. Half of all pairs were created with the reference
speaker identical to the target speaker of the conversion (the
“same” condition); the other half were created with the refer-
ence speaker being of the same gender, but not identical to the
target speaker of the conversion (the “different” condition). The
experiment was administered to 50 listeners, with each listener
judging 48 sentence pairs.

Listeners’ average response scores (scores in the “differ-
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Figure 3: Speech quality, with asterisks showing significantly
better configuration. The digit represents the config number and
S/L represents small and large number of training utterances.
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Figure 4: Conversion accuracy, with white and black bars repre-
senting the large and small training set, respectively. The inter-
esting significant differences are shown using the dashed lines.

ent” conditions were multiplied by −1) are shown in Figure 4.
We did not find any difference between the baseline GMM and
the baseline DNN. In all configurations, the difference between
small and large training set is significant. For both large and
small sets, a significant difference was found between the base-
line DNNs and the pre-trained DNNs using both single and mul-
tiple frames. We did not find any significant difference between
single-frame and multiple-frame pre-trained DNNs. Finally, we
did not find any significant difference between the pre-trained
DNN trained on the small set and the baseline DNN trained on
the large set. The statistical tests in this subsection were per-
formed using the Mann-Whitney test [29].

4. Conclusion
In this study, we proposed a novel Stacked-Joint-Autoencoder
architecture, which aims to find a common encoding of paral-
lel source and target features. We also proposed to train the
SJAE using unrelated speakers that are similar to the source
and target speaker, instead of using only the source and target
speakers. We pre-trained the DNN using the SJAE and further
fine-tuned the network. We trained two speaker conversions and
compared several system configurations objectively and subjec-
tively while varying the number of available training sentences.
The objective results showed that the semi-supervised learning
scheme helps the training of the DNN significantly. We also
found significant improvements in both speech quality and con-
version accuracy. However, we were not able to find significant
improvements when appending multiple frames.
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