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Abstract— Phonological disorders affect 10% of preschool and
school-age children, adversely affecting their communication, academic
performance, and interaction level. Effective pronunciation training
requires prolonged supervised practice and interaction. Unfortunately,
many children do not have access or only limited access to a speech-
language pathologist. Computer-assisted pronunciation training has the
potential for being a highly effective teaching aid; however, to-date
such systems remain incapable of identifying pronunciation errors with
sufficient accuracy. In this paper, we propose to improve accuracy by
(1) learning acoustic models from a large children’s speech database,
(2) using an explicit model of typical pronunciation errors of children
in the target age range, and (3) explicit modeling of the acoustics of
distorted phonemes.

I. INTRODUCTION

Phonological disorders are among the most prevalent commu-
nication disabilities diagnosed in preschool and school-age chil-
dren, affecting 10% of this population [1]. In 2006, over 90%
of speech-language pathologists in schools served individuals with
speech sound disorders [2]. As noted by the American Speech-
Language Hearing Association, “there is an observed relationship
between early phonological disorders and subsequent reading, writ-
ing, spelling, and mathematical abilities” [3]. Furthermore, speech
production difficulties affect not only a child’s communication and
academic performance, but also their level of interaction with peers
and adults.

While computer-assisted pronunciation analysis and training
holds promise for these children, the technology resulting from
research on Computer-Assisted Pronunciation Training (CAPT) has
not yet been successfully extended to help this population. Exist-
ing speech-analysis technology uses, almost exclusively, phoneme-
probability scores that are output by a conventional speech recog-
nizer. Given state-of-the-art automatic phoneme recognition accu-
racy of 76% on speech from non-hearing-impaired adults [4] and
increased acoustic variability observed in children’s speech [5],
it is not surprising that the success of this phoneme-recognition
approach has been limited.

Human instruction is thus the only effective option that is cur-
rently available for providing feedback to assist children in learning
to speak more intelligibly. However, such instruction is limited to
those children who have access to a speech therapist, and even
then, instruction is limited by the therapist’s availability. Effective
pronunciation training requires “prolonged supervised practice and
interaction” [6], and the difficulty that children experience when
learning to articulate clearly is “in part because of the limited
amount of their time that is available for speech training, and
in part because of the shortage of highly proficient teachers” [7].
Human-based assessment of speech intelligibility and human-based
pronunciation training have the potential to be supplemented with

Research reported in this publication was supported by the National
Institute on Deafness and Other Communication Disorders of the National
Institutes of Health under award number R21DC012139. The content is
solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

All Authors are at the Center for Spoken Language Under-
standing, Oregon Health & Science University, Portland, OR, USA.
[dudy|asgari|kaina]@ohsu.edu

automated tools for increased efficiency and efficacy. Once the
accuracy of automated tools is sufficiently high, such a combination
of human and computer assessment and training has the potential
to be especially effective. Pronunciation training by computer
holds the potential of providing children with effective tutoring on
demand, at low cost, and independent of location. Such a child will
be able to use the computer for highly repetitive practice when
a human teacher is not available, and to use a human teacher
for more personal training and motivation. While pronunciation-
analysis software has potential for being an effective teaching aid,
either stand-alone or in conjunction with a human teacher, this
potential has not yet been realized because current assessment
accuracy is not yet sufficient for real-word systems.

[8] noted that “all the existing commercial or research systems
are. . . still vastly inferior to human teachers. One reason is that
their detection and diagnosis of pronunciation errors is not good
— and especially not robust — enough.” Similarly, according to
[9], “There can be no doubt that integrating automatic speech
recognition in CAPT is by far the most valuable component. . . But
it is also painfully clear that there are still many shortcomings.” No
prior work has succeeded in automatically identifying pronunciation
errors with sufficient accuracy, and consequently there are cur-
rently no credible speech-enabled software applications for assisting
teachers in pronunciation evaluation or training.

The immediate objective of our research is to develop a method
that will constitute the core component of an effective pronunciation
analysis system for children aged 4–7, that are either typically
developing or presenting with speech sound disorders, enabling
them to receive accurate feedback on speech production even when
a clinician is not present. The long-term goal is to have such
a system integrated into remediation techniques, complementing
current therapy strategies. In this work, we build upon existing
methodologies in this research area and extend them. Specifically,
our main contributions are (1) learning acoustic models from a large
children’s speech database, (2) using an explicit model of typical
pronunciation errors of children in the target age range, and (3)
explicit modeling of the acoustics of distorted phonemes.

II. PREVIOUS APPROACHES

Computer Assisted Pronunciation Training (CAPT) programs are
used to improve pronunciation skills, they are aimed mostly at
children and second language learners [10]. To obtain a phoneme-
level analysis of pronunciation, CAPT systems operate according to
the key idea that goodness of pronunciation can be measured by the
ratio of the likelihood of an acoustic observation when constrained
on the one hand to an expected phoneme sequence, and on the other,
to the most likely phoneme sequence. An early approach, called
the HMM-based (Hidden Markov Model) Log-Posterior [11] and
described in Equations 1 and 2, computes the ratio of each frame
found in y the between the likelihood probability of the expected
acoustic model, computed in P (yt|qi) to the sum of likelihoods,
of the current frame, of all acoustic models. Summing up the ratio
over all frames in segment y produces the score. Later, applying



a pre defined threshold to the scores determines wether a sum-
over-ratios is low which results in a ’good pronunciation’ decision.
Mathematically,

P (qi|yt) = log(P (qi|y)/Ni (1)

= log

(∑
i∈t

P (yt|qi)P (qi)∑
jεJ

P (yt|qj)P (qj)

)
/Ni (2)

where qi is the expected phoneme, y is the observation set, yt is
the frame at time t, {qj}J1 is the set of all phonemes, and Ni is the
duration of expected phoneme.

Another approach is based on the assumption that if the expected
phoneme sequence matches the most likely sequence then a pro-
nunciation is correct. Specifically, the Goodness of Pronunciation
(GOP) measure is described by [12] and defined as

GOP(qi) = log(P (qi|O)/Ni (3)

= log

(
P (O|qi)P (qi)∑
jεJ

P (O|qj)P (qj)

)
/Ni (4)

where qi is the expected phoneme, O is the observation set,
{qj}J1 is the set of all phonemes, and Ni is the duration of expected
phoneme.

First, an existing Automatic Speech Recognition (ASR) system
segments the speech of the participant into time-aligned phonemes.
This segmentation, called “forced alignment,” is performed by
restricting the ASR system to recognize only the phoneme sequence
that is expected, based on the target word. The ASR output contains
the time location (begin time and end time) of each of these
target phonemes. In the numerator of Equation 4, the observation
O containing features extracted from the segments within time
locations is compared to a corresponding acoustic model to set
the likelihood of the expected phoneme. For the denominator,
the extracted features from the segment are compared against all
acoustic models to find the highest scoring likelihood path. If there
is a match such that the most likely path is found to be the expected
path then the GOP score is higher than a preset threshold. GOP is
robust to phoneme durations and normalizes its score by the length
of the segment.

A simplification of this method departs from the original GOP
by choosing the biggest, most likely subpath found within the
boundaries of the expected segment instead of computing the entire
most likely path [6]. This is described as

GOPmax(qi) = log

(
P (O|qi)P (qi)

max jεJP (O|qj)P (qj)

)
/Nqi . (5)

Another extension of GOP was used for scoring second-language
learners. Originally, in Equation 3, the GOP’s numerator produces
a score describing the likelihood of a phoneme from a limited
set of known candidates and the denominator does the same from
an unconstrained set of phonemes. Later, GOP has been extended
to recognize mispronunciations of second-language learners as
described by [13], who changed the numerator to be the set of
phonemes from the target language and the denominator is the set
of phonemes from both source and target. He called this CNORM.

While CAPT systems have potential to assist improve speech,
current technology cannot yet analyze speech in a sufficiently
detailed and precise manner to allow the identification of pronuncia-
tion errors accurately and consistently at the phoneme level. Results,

reported as total error rates, have generally ranged from 18% [12] to
60% [14], with one reported error rate as high as 100% [15]. In the
best reported results [12], evaluation was conducted by deliberately
creating phoneme substitutions in the transcription of the “correct”
phoneme sequence; insertion and deletion errors were not created
or tested.

III. CORPUS OF CHILDREN’S PRONUNCIATIONS

A. Collection

We recruited 90 children aged 4–7 (µ = 5.3, σ = 1.3) that
are presenting with speech production challenges or are typically
developing. Co-occurrence of receptive and expressive language
disorders is prevalent in children with speech production challenges,
and thus all children were screened to ensure that they demonstrated
the ability to complete the tasks required in the study. The diagnosis
of a speech sound disorder was based on a licensed, credentialed
Speech-Language Pathologist (SLP) completing a standardized as-
sessment, and exercising clinical judgment based upon transcribed
speech samples and normative data.

Children spoke words from the Goldman-Fristoe Test of Ar-
ticulation (Sounds-in-Words Section only) [16], consisting of 53
simple words (e. g. “house”, “tree”, “window”). Spoken words were
elicited from describing images with the assistance of the SLP. 19
children were diagnosed with articulation disorder, 24 with speech
disorder, and the remainder were typically developing.

A second speech expert and SLP phonetically transcribed the
children’s speech (with simultaneous access to video) using the
full range of IPA, including a wide variety of diacritics to represent
distorted symbols. This expert also scored whether a phoneme
was pronounced correctly, or incorrectly. For some words, sev-
eral canonical pronunciations were acceptable, and thus actual
pronunciations were compared relative to the closest canonical
pronunciation. Finally, phonetic segmentation was performed by a
third expert.

B. Pronunciation Analysis

The phonetic transcriptions allowed for a symbolic analysis of
children’s pronunciations. Table I shows results for both typically
developing (TD) and speech-disordered (SD) children. As antici-
pated, all recognized sounds seen in Table I were similar to expected
sounds, in terms of phonetic features. We found that the first
two confusions in both groups and confusions 5 & 6 in TD and
confusions 4 & 5 in SD were identical, though to different extents.
In addition, the SD group experienced a higher confusion rate in
absolute terms.

Our findings are supported by the research literature concern-
ing children’s speech. Typical development of speech production
throughout the years involves some “common mismatches”, for
example the case of /N/→/n/ (confusion 6 for the SD group) [17].
Furthermore, in speech reception studies, children were confused
in judging whether two phonemes were the “same” or “different”
when they listened to certain patterns: /ô/ →/w/, /l/→/w/, /T/→/f/,
/z/→/s/, /s/→/T/, and /k/→/t/ [18]; we also found some of these
patterns in our data.

We can also study specific pronunciation patterns of a partic-
ular word as produced by SD vs. TD. For example, Figures 1a
and 1b show that while the TD subjects demonstrate relatively few
phoneme substitutions with close acoustic proximity, SD subjects
produce many more phoneme deletions and insertions, and substitu-
tions have less acoustic proximity. The SD group also demonstrated
a larger number of unique (with respect to the groups) confusions —



# exp. act. %
1 ô w 1.077
2 l w 0.518
3 Z dZ 0.477
4 S tS 0.447
5 T f 0.396
6 s T 0.386
7 z D 0.365

(a) typically-developing

# exp. act. %
1 ô w 1.875
2 l w 1.050
3 k t 0.505
4 s T 0.492
5 T f 0.492
6 N n 0.439
7 z s 0.372

(b) speech-disordered

TABLE I: The top seven phoneme-confusions of typically devel-
oping and speech-disordered children. The expected and actual
phonemes are in columns 2 and 3, respectively. The corresponding
percentage of each confusion is in the final column (computed as
the count of the particular confusion divivded by the total count of
pronounced phonemes).

(a) typically-developed

(b) speech-disordered

Fig. 1: Comprehensive pronunciation graphs of the word “jumping”
for typically developing and speech disordered children. The cyan
and magenta arrows mark phonemes that are unique to the group.

seven vs. one in the example shown. These were common patterns
for most words.

IV. METHOD

A. System

We aim to improve the baseline GOP measure described in
Equation 4 by (1) learning acoustic models from a large children’s
speech database, (2) incorporating the explicit models of correct and
incorrect pronunciations of the corpus described in the previous
section, and (3) explicit modeling of the acoustics of distorted
phonemes through the availability of fine-grained phonetic tran-
scriptions during recognizer training.

Learning acoustic models in ASR systems require a fairly large
amount of training data, which is mostly beyond the scope of
data collection for specialized populations. We tackle this issue by
adding a large children’s speech database to our small corpus for

learning acoustic models. For a given target word w, composed
of P phones p1, p2, . . . , pP , let b1,b2, . . . , bP , bP+1 denote the
phoneme boundaries (in frames), such that pi spans frames [bi :
bi+1) (half-open interval). We estimate phoneme boundaries and
frame-level likelihoods through ASR lattices created by the Kaldi
toolkit [19]. These lattices are created based on Weighted Finite
State Transducers (WFSTs), which efficiently integrate the sources
of knowledge of the acoustic model, the language model, and the
lexicon during the decoding phase of the ASR system. We define
the improved GOP measure for the ith phoneme, pi, of the target
word w, as

GOP(pi) =
L (ϕ∗C[bi : bi+1))

αL (ϕ∗C+I[bi : bi+1)) + (1− α)L (ϕ∗[bi : bi+1))
(6)

where

ϕ∗C = argϕmax (H ◦ C ◦ LC) (7)

ϕ∗C+I = argϕmax (H ◦ C ◦ LC+I) (8)

ϕ∗ = argϕmax (H ◦ C) (9)

represent the most likely path/phoneme sequences given different
WFST networks, H and C denote the HMM tree structure and
phonetic context-dependency, respectively, the symbol ◦ denotes
WFST composition, and L(.) represents the summation of negated
log-likelihoods over associated frames. The tuning parameter α con-
trols the contribution of likelihood scores driven from constrained
vs. open-loop lattices; in other words, it controls the degree to which
we expect to encounter previously-seen pronunciation mistakes.

We employ both constrained and open-loop lattices with identical
H and C in order to compute the GOP(pi). Constrained lattices,
located in the numerator and the left hand side of the denominator
of the GOP, are generated by composing H ◦ C with either the
lexicon containing correct pronunciations for the target words,
LC, in Equation 7, or the combination of correct and incorrect
pronunciations, LC+I , in Equation 8. Correct pronunciations were
globally constructed from all available data, whereas incorrect
pronunciations were sourced from the training set exclusively.
Phone boundaries are identified using Equation 7.

The open-loop is needed to account for the possibility of en-
countering previously-unseen mispronunciations, or even entirely
unexpected words. It is located on the right-hand side of the
denominator of Equation 6, and thus H ◦ C is not restricted to
any specific phoneme sequence in Equation 9.

B. Training

We built a context-dependent HMM-GMM (Gaussian Mixture
Models) system on speech utterances of the OGI Kids corpus
and Corpus of Children’s Pronunciations (CCP). The OGI Kids
corpus [20] is composed of 27 hours of spontaneous speech from
a gender balanced group of 1100 typically developed children
from kindergarten through grade 10[20]. For extracting speech
features, a window of 7 frames (current frame, 3 prior and 3
proceed frames of the current frame) were taken to extract 13-
dimensional MFCCs with delta and delta-delta coefficients. After
cepstral mean and variance normalization per speaker, features
were reduced down to 40 dimension using linear discriminant
analysis (LDA). Model-space adaptation using maximum likelihood
linear regression (MLLR) are applied followed by speaker adaptive
training (SAT) of the acoustic models by both vocal tract length
normalization (VTLN) and feature-space adaptation using feature-
space MLLR (fMLLR).

For evaluation purposes, we used a four-fold cross validation
scheme by dividing the CCP into four independent sets. For training



Fig. 2: Parameter optimization on the training set.

C I Total
Proposed system 66.3 45.7 56.1
Original GOP 64.7 45.1 54.2

TABLE II: Accuracy of the proposed system and the original GOP
compared to a human expert.

the ASR model parameter, we used three of the four sets of the CCP
in addition to the OGI Kids corpus, and used the fourth ones of the
CCP only for reporting the performance. Note that the test is only
performed on CCP utterances.

C. Evaluation

We defined a threshold parameter θ; GOP scores below θ
were considered incorrectly pronounced and above as correctly
pronounced. Both α (of Equation 6) and θ were two parameters
that were optimized after training the ASR acoustic models, using
training data only, see also Figure 2. Best values were near θ = 0
and α = 0.9.

For the proposed method we applied a two dimensional search of
α and θ. For the original GOP, described in Section 2, Equations 3
and 4, we only needed to choose θ. We chose α and θ that correlated
most with the expert’s annotation (see III-A). We compared two
systems, our proposed system and the original GOP formulation.
Table II presents the system’s performance on the test set. “C”
and “I” represent the number of times the system agreed with the
expert that the output is “correct” or “incorrect” respectively. The
last column is the total accuracy. To produce the total accuracy
we equally weighted “C” and “I” accuracies. While the proposed
system was a little better than the original GOP in recognizing
incorrect pronunciations, it was 2% better in recognizing correct
pronunciations.

We conducted a binomial test on 1635 phonemes. We found that
with a p-value of less than 0.5 the proposed model is significantly
different from the original GOP and predicts the children’s pronun-
ciation performance more accurately overall.

V. CONCLUSION

In this paper we aimed to create an automatic pronunciation
analysis system for children that are younger than 7 years old,
and who may present with speech sound disorders. Using a state-
of-the-art speech recognizer, we apply a multi-pronged approach:
First, we learned acoustic models from a large children’s speech
database. Second, we extended the acoustic models by training on

a special-purpose database that contained many types of distorted
phonemes, which were thus explicitly modeled. Finally, we used
explicit models of typical correct and incorrect pronunciations of
target words of children in the target age range, and with similar
types of diagnoses. Our results show that these approaches lead
to a significant performance improvement — 56% vs. 54% —
in overall accuracy. However, further work is needed to improve
system performance to approach that of a human expert.
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