Handling Variables

In order for a clause to be true for an interpretation, the must be true in that interpretation for any variable assignment. Could do proof procedure on all ground instances of the clauses:
- Include all constants in KB and in query.
- If no constants, one (just one) needs to be invented.
- Only a finite number, so algorithm guaranteed to stop.
- Method is complete and sound for proving ground atoms.

Example:

$q(a)\land q(b)\land r(a)\land s(W)\leftarrow r(W).$

Variables in Clauses

Variables in KB useful for expressing knowledge:
- Can derive parent and grandparent from father and mother.
- Variables in KB useful for expressing knowledge:

VARIABLES

Example KB

Top-down Reasoning Procedure

Formal Procedures

Function Symbols

Top-down Procedural with Variables
Examples

\[
\begin{align*}
\{v/Z',X/X\} & \quad \{(Z' \land X' \land Z' \land X) \land \neg \neg (X' \land X)\} \\
\{v/A'/X\} & \quad \{(A' \land X) \land \neg \neg (X' \land X)\} \\
\{X/Z',0/X\} & \quad \{(X' \land 0) \land \neg \neg (X' \land X)\} \\
\{v/X\} & \quad \{(X' \land X) \land \neg \neg (X' \land X)\} \\
\{v/X'\} & \quad \{(X' \land X') \land \neg \neg (X' \land X)\}
\end{align*}
\]

Substitution

- A substitution is a finite set of the form \(\{V_1/t_1, \ldots, V_n/t_n\}\).
- Each \(V_i\) is a distinct variable and each \(t_i\) is a term.
- A substitution is in normal form if no \(V_i\) appears in any \(t_j\).
- \(\{v/Z',X/X\}\) is not in normal form, but \(\{v/A'/X\}\) is.
- \(\{v/Z'/0/X\}\) is a substitution of \(X'\) in expression \(X' \land X\).
Overview

- Variables
 - Top-down Proof Procedure
 - Function Symbols
 - Proof Procedures
 - Top-down Reasoning Procedure
 - Variables

Most General Unifier

- Most General Unifier (MGU)
 - If σ is a unifier of e_1 and e_2 giving e, and if for any other unifier of them, say σ' giving e', then e' is an instance of e.
 - If two expressions can be unified, they will have an MGU.
 - Could be more than one.

- Example:
 - $p(X, Y)$ and $p(Z, Z)$
 + $\{X/Z, Y/Z\}$ is an MGU resulting in $p(Z, Z)$
 + $\{Y/X, Z/X\}$ is an MGU resulting in $p(X, X)$

Unifiers

- Substitution σ is a unifier of expressions e_1 and e_2 if $e_1\sigma = e_2\sigma$.
 - Expressions resulting from applying σ to each occurrence of each operator.
 - They are both instances of each other.
 - Expression e_1 is renaming of e_2 if they differ only in names of variables.
 - Could be more than one.

- Example:
 - $\{X/a, Y/b\}$ is a unifier of $t(a, Y, c)$ and $t(X, b, c)$.

Lifters

- Expressions have many unifiers.
 - Example: $(x/\lambda y.x)$ and $(y/\lambda y.y)$ are unifiers of $(z/\lambda y.z)$.
 - If σ is a unifier of e_1 and e_2, then σ is in the set of all substitutions that are a unifier of e_1 and e_2.
Derivation

- \(\gamma_0 \) is answer clause corresponding to original query
- \(\gamma_i \) obtained by
 - Give \(\gamma_{i-1} \) fresh variables
 - Ensures \(\gamma_{i-1} \) does not have any variables in common with anything in KB
 - Captures how variables are locally scoped
 - Select an atom in body of \(\gamma_i \)
 - Choose a clause in KB whose head will unify with the chosen atom
 - Resolve \(\gamma_{i-1} \) with clause
- \(\gamma_n \) is an answer, and so is of the form
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow .
 \]

Definite Resolution with Variables

- Generalized answer clause
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow a_1 \land \ldots \land a_m
 \]
- Resolution Rule
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow a_1 \land \ldots \land a_m \quad a_i \leftarrow b_1 \land \ldots \land b_p
 \]
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow a_1 \land \ldots \land a_{i-1} b_1 \land \ldots \land b_p a_{i+1} \land \ldots \land a_m
 \]
 \[\theta\]
 Where \(\theta \) is the most general unifier of \(a \) and \(a_i \)

Top-down Proof Procedure Recap

- \(\text{Start with goal, work toward facts in KB} \)
- \(\text{Definite Clause Resolution for Ground Case} \)
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow a_1 \land \ldots \land a_m
 \]
 \[
 a_i \leftarrow b_1 \land \ldots \land b_p
 \]
 \[
 \text{yes} \left(t_1, \ldots, t_k \right) \leftarrow a_1 \land \ldots \land a_{i-1} b_1 \land \ldots \land b_p a_{i+1} \land \ldots \land a_m
 \]
 \[\theta\]
 Definite Clause Resolution for Ground Case
 \[
 \text{Start with goal, work toward facts in KB} \]
Overview

- Variables
- Top-down Proof Procedure
- Function Symbols
- Proof Procedures
- Top-down Reasoning Procedure
- Variables

Robot Delivery KB

Example: Robot Delivery
Further Usefulness of Function Symbols

• What about lists or sets of individuals?
 - We could make up a constant symbol for each list:
 - has member(lista, peter)
 - has member(lista, tim)
 - But an infinite number of lists even when there is just a single constant.
 - Can’t make up a name for every possible list.

• Can use functions to refer to a list by referring to its elements.
 - Functions have to have a fixed number of arguments.
 - So cannot use list(a, b) list(c, d, e).
 - Instead use function that lets you specify list one element at a time.
 - cons(peter, cons(tim, null))
 - null is an empty list.
 - cons(X,L) refers to the list whose first element is X and the rest of the list as L.

Usefulness of Function Symbols

• Can talk about objects in the domain without having a constant symbol for them.
 - Might want to say time(13, 15) to refer to 1:15pm.
 - Just need 60 constant symbols rather than 24*60.
 - Can talk about objects in the domain without having a constant symbol.

Function Symbols

• Predicate symbols used to assert that something is true or false.
• Constants refer to something in the domain.
• Variables refer to something in the domain.
 - Functions also refer to something in the domain.
 - constant mary could be mapped to Mary.
 - function motherof(john) could also be mapped to Mary.
Defining Functions

Any knowledge about functions must be defined by clauses

Simple Examples

\[\text{before}(am(H_1, M_1), \text{am}(H_2, M_2)) \rightarrow H_2 < 12 \]
\[\text{before}(am(H_1, M_1), \text{am}(H_2, M_2)) \rightarrow H_1 < H_2 \land H_2 < 12 \]
\[\text{before}(am(H, M_1), \text{am}(H, M_2)) \rightarrow M_1 < M_2 \]

\[\text{before}(pm(12, M_1), \text{pm}(H_2, M_2)) \rightarrow H_2 < 12 \]
\[\text{before}(pm(H_1, M_1), \text{pm}(H_2, M_2)) \rightarrow H_1 < H_2 \land H_2 < 12 \]
\[\text{before}(pm(H, M_1), \text{pm}(H, M_2)) \rightarrow M_1 < M_2 \]

Semantics of Function Symbols

\(\varphi \) used to just map constants to objects in the domain
\(\varphi \) also maps n-ary function symbol \(f \) to \(D^n \rightarrow D \)-

Notice that it is defined as mapping \(D^n \) to \(D \), not constants \(n \)

Hence, there can be objects in the domain that might not have a constant

Interpretations no longer finite

One 1-ary function symbol can name an infinite number of objects

For example, \(+ \) can only be declared in the domain that includes the constant

Notice that it is declared as a predicate, not a constant

\(\varphi \) also maps a function symbol to \(D^n \rightarrow D \)-

\(\cdot \) maps to \(D \)

Terms can only appear inside of predicates (unary only needed)

Where \(f \) is a function symbol then the \(f \) is a term

Term is either a predicate, constant or of the form \(f(t_1, \ldots, t_n) \)

Function Symbols in Datalog

Overview

• Variables
• Top-down Proof Procedure
• Function Symbols
• Top-down Proof Procedure with Variables
• Variables

Clauses about Trees

• Has leaf \((L, T)\)
 - \(L\) is true if \(L\) is the label of a leaf in tree \(T\).

Building Data Structures

• Can use function symbols to build other data structures

Example:

\[
\text{node}(n_1, \text{node}(n_2, \text{leaf}(l_1), \text{leaf}(l_2)), \text{node}(n_3, \text{leaf}(l_3), \text{node}(n_4, \text{leaf}(l_4), \text{leaf}(l_5))))
\]
Normal Form of Substitutions

• \{X/f(X)\} cannot be put into normal form.
• What is normal form too restrictive?
 • Consider KB = lt(X, s(X))
 lt(X, s(Y)) ← lt(X, Y).
 • Does lt(X, X) follow from KB?
 • Does lt(X, s(X)) unify with lt(X, X)?
 + Note we made up new variables so we don't get confused
 • The unifier \{X_1/X, X/s(X)\}
 + But this cannot be put into normal form
 + Good thing, otherwise, we would have an example of an unsound inference
 + Checking for this is called occurs check

Top-Down Proof Procedure
• Just have to make sure procedure that determines MGU
 works with function symbols
 • Need to be careful about normal form
 • Most substitutions can be put into normal form
 \{X/Z, Z/a\} ⇒ \{X/a, Z/a\}
 \{X/Z, Z/X\} ⇒ \{X/Z\}
 • Can any substitution be put into normal form?
 • What about \{X/f(X)\}?

Bottom-Up Proof Procedure with Variables
• Previously, had bottom-up proof procedure replace clauses with variables with all ground instances
• But, function symbols cause infinite number of terms
 • But it is countable
 • There is a way to enumerate all terms
 • Just have to make sure procedure that determines MGU
Overview

- Variables
- Top-down Proof Procedure with Variables
- Function Symbols
- Proof Procedures

Examples

$p(X, Y)$ and $p(Z, Z)$

$p(X, X)$ and $p(f(A, c), B)$

$p(X, X)$ and $p(B, f(A, B))$

```
((g' \vee f' g) d \text{ and } (X' X) d)
```

```
((\neg \vee f' g) d \text{ and } (X' X) d)
```

```
((g' (\neg \vee) f') d \text{ and } (X' X) d)
```

```
(Z' Z') d \text{ and } (A' X') d
```

Algorithm for Finding MGU (Not in textbook)

- Take two expressions (no variables in common)
- Compare them token for token (left to right)
- If one has a connector, the other must have the same one
- If one has an n-ary symbol, the other must as well
- For each term of predicates and functions:
 - If one has a variable, the other must as well
 - If one has a constant, the other must as well
 - If one has a connector, the other must have the same
- For each pair of predicates and functions (in variables in common):

```
\text{let } \mathbf{e}_1 \text{ and } \mathbf{e}_2 \text{ be expressions}
```

- Algorithm for Finding MGU (Not in textbook)
Depth-first Search

- Choose first clause in KB where head matches
- We will error on consistent derivation of goal with that head
- Always select first atom in body
- Choose a clause in KB whose head unifies with the chosen atom
- Select the clause in body of $i-1$
- Choose points

Reasoning Procedure

- (Not in chapter 2)
- Reasoning procedure resolves the nondeterminism of proof procedure
- Needs to be done through search
 + Search for the set of choices that reasoning procedure would have picked
 + Search space is large so need to search carefully
- Reasoning procedure might be incomplete because either
 - Proof procedure was incomplete
 - Search strategy can’t find answer (perhaps because space is too large)

Top-Down Proof Procedure (Repeat)

- Sequence of γ_0, γ_1, ..., γ_n
- γ_0 is answer clause corresponding to original query
- γ_i obtained by
 - Give γ_{i-1} fresh variables
 + Ensures γ_{i-1} does not have any variables in common with anything in KB
 + Captures how variables are locally scoped
- Select an atom in body of γ_{i-1}
- Choose clause in KB whose head will unify with the chosen atom
- Resolve γ_{i-1} with clause

- γ_n is an answer, and so is of the form $\text{yes}(t_1, ..., t_k) \leftarrow$. Lot's of Choice Points / Nondeterminism
- Functions let you refer to things without explicit names.
 - Can refer to any subtree, by describing by functions.
 - It is the subtree with node n1 which right branch ... and left branch ...

- Unification does the right thing with functions.
 - Just do hierarchal symbol matching.
 - Makes it easy to reason about parts of the subtree by symbol matching.

Final Word on Functions

Summary of Proof

- Prove l_{4} is a leaf of $n(n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).

1. First clause in KB does not unify.
2. Second clause in KB unifies.

 - $\text{has leaf}(l_4, n(n_1, n(n_2, l(l_1), l(l_2)), n(n_3, l(l_3), n(n_4, l(l_4), l(l_5))))).$

- First clause in KB does not unify.
- Second clause in KB unifies.

 - $\text{has leaf}(l_4, l(l_1)).$

- Third clause in KB unifies.

 - $\text{has leaf}(l_4, n(n_4, l(l_4), l(15))).$

 - First clause in KB does not unify.
 - Second clause in KB unifies.

 - $\text{has leaf}(l_4, l(l_4)).$

 - First clause in KB does.

Example Proof with Functions

- Defined $\text{has leaf}(L, T)$ as true if L is label of leaf in T.

- $\text{has leaf}(L, n(N, LT, RT))$.

- $\text{has leaf}(L, n(N, LT, RT)) \leftarrow \text{has leaf}(L, LT).$

- $\text{has leaf}(L, n(N, LT, RT)) \leftarrow \text{has leaf}(L, RT).$

CSE560 Class 04

P. Heeman, 2010