Example

\[\text{KB}: \text{female(sally)} \]

\[\text{Prove } \text{KB} \models \text{person(sally)} \]

What does \(\text{KB} \models \text{person(sally)} \) mean?

- Means that if interpretation \(I \) models \(\text{KB} \) then it models \(\text{person(sally)} \).

- Could be proven by checking all interpretations.

Let's do proof by contradiction instead.

- Assume that \(I \) is a model of \(\text{KB} \) but not a model of \(\text{person(sally)} \).

Review

- An interpretation maps any clause to either true or false.
- It is a complete mapping.
- A model \(I \) of \(\text{KB} \) is an interpretation that maps every clause in \(\text{KB} \) to true.
- \(\text{KB} \models g \) iff every model of \(\text{KB} \) makes \(g \) true.

Overview

- Semantics
- Queries
- Proof Procedures
- Bottom-up Ground Proof Procedure
- Top-down Ground Proof Procedure

Questions
Overview

• Semantics ⇒ Queries

• Proof Procedures

• Bottom-up Ground Proof Procedure

• Top-down Ground Proof Procedure

More on Variables in Clauses (pg. 42)

• Say parent(X,Y) ← father(X,Y) is in KB
 - Implicit universal quantifiers around it
 - Anytime that father(X,Y) is true, so must parent(X,Y)

• Say grandfather(X,Y) ← father(X,Z) ∧ parent(Z,Y) is in KB
 - This clause is true for all X, Y, Z
 - ∀X Y Z (grandfather(X,Y) ← father(X,Z) ∧ parent(Z,Y)).
 - Z only appears in the body

• How does Z work here (variable just in the body)?
 - For any X and Y, if we find a Z that makes body true, head must be true
 - Now it seems that Z is just existentially quantified
 - We just need to find one Z for each X and Y, not ensure it is true for all Z

Proof by Contradiction: A Semantic Proof

• Assume I = \{D, φ, π\} is a model of KB = \{female(sally) \lor person(X) ← female(X)\}
 - So \(<φ(sally)> ∈ π(female)\)
 - Say φ(sally) = F, so <F> ∈ π(female) (1)
 - person(X) ← female(X) must be true for I ρ for any var. assignment ρ (2)

• Assume person(sally) is not true under I
 - So <F> \notin π(person) (3)

• Consider variable assignment ρ where ρ(X) = F
 - If female(X) is true for I ρ then person(X) must be true for I ρ (from (2)) (4)
 - ρ(X) = F and <F> ∈ π(female) so female(X) is true for I ρ (5)
 - So person(X) must be true for I ρ (from (4) and (5))
 - ρ(X) = F so <F> ∈ π(person) (6)

• Contradiction from (3) and (6)
Overview

• Semantics
• Queries ⇒ Proof Procedures

• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure

Queries with Variables

• You might not only want to check if something is true or false, but what value makes it true.
 - KB:
 - father(william,ted)
 - parent(X,Y) ← father(X,Y)

• Example:
 - ?parent(X,ted)
 - Who is Ted's parent?
 - Could transform this to yes ← parent(X,ted)
 - But, let's capture the variables in the body:

Ground Queries

• A query is a way to ask if a body is a logical consequence of KB:

 ? b₁ ∧ ... ∧ bₘ

• Ground query (no variables) has the answer:
 - "yes" if the body is a logical consequence of the KB
 - "no" if the body is not a logical consequence of the KB

• We do not distinguish between it being false in all models or just some.

• You might not only want to check if something is true or false.

Ground Queries

• This Rests Your Queries as Finding Consequences From KB
 - Check if \(\exists x, \text{father}(x,\text{ted}) \) in KB
 - Add (temporarily) \(\text{yes}(\text{yes}(\text{yes}(\text{yes}))) \) to KB
 - Transform query
 - yes ← yes ← yes ← yes ...

 • Can do query-answering:

 • Knowledge base, yes \(\models \) yes if yes is a logical consequence of the KB

 • Yes is a way to ask if a body is a logical consequence of the KB
Proof Procedures

- Proof:
a mechanically derivable demonstration that a formula logically follows from a KB
- Proof procedure:
an algorithm that constructs proofs
- \(\text{KB} \vdash g \) means \(g \) can be derived from \(\text{KB} \) with the proof procedure
- Proof procedure can be nondeterministic
- To do so in practice we need an actual implementation

Properties of Proof Procedure

- Soundness: if \(\text{KB} \vdash g \) then \(\text{KB} \models g \)
- Completeness: if \(\text{KB} \models g \) then \(\text{KB} \vdash g \)

Terminology:
- Semantic proof: \(\models \), logically follows, logically entails, models
- Syntactic proof: \(\vdash \), derives

Semantics Is Not Enough

- We have KB - We know what conclusions are valid to make
- KB \(\models g \) iff \(g \) is true in all models of KB
- Can extend this so user can ask queries with variables as well
- But, don't yet have a mechanical way of checking if KB \(\models g \)
- Checking all interpretations is very expensive

- We can access the KB.
Non-deterministic Specification

• Haven't specified the exact order that things should be done in
• What order should we pick clauses from KB to try?

Bottom-up Ground Proof Procedure

• For now, only consider ground facts and ground rules
• Bottom-up or forward chaining procedure starts from KB and works towards query
• Forward chaining rule:
 - If $h \leftarrow b_1 \land \ldots \land b_m$ is a clause in KB and each b_i has been derived, then h can be derived
 - If h is a fact in KB, then h can be derived
 - Call the set of derivables the consequence set (C)

Semantics

• Queries
• Proof Procedures
• Bottom-up Ground Proof Procedure
• Top-down Ground Proof Procedure

Overview
Is it Complete?

• Does \(C \) have every ground atom that logically follows from \(KB \)?
• We need to prove something about consequence sets
• Let \(C \) be the final consequent set generated by the algorithm
 - Will stop because finite number of constants and predicate symbols
 - Will stop with same \(C \), no matter what order \(C \) was generated

Define \(I \) such that for atom \(h \)
 - \(I(h) \) is true if \(h \in C \)
 - Otherwise, \(I(h) \) is false
 - \(I \) is an interpretation because it defines a subset of ground atoms as true, and the rest as false

• \(I \) is an interpretation, but is it a model of \(KB \)?
 - i.e., for every \(g \in KB \), is \(I(g) \) true?
 - Proof by contradiction: assume \(KB \vdash g \) but \(KB \nvDash g \)
 - \(g \) is the result of a finite number of derivations
 - Without loss of generality, assume \(g \) is first one in derivation such that \(KB \nvDash g \)
 - Now \(g \) was derived by a cause
 - \(g \leftarrow b_1 \land \ldots \land b_m \) in \(KB \) where the \(b_i \)’s have already been derived
 - Since \(g \) was derived, all \(b_i \)’s logically follow from \(KB \)
 - So \(b_1 \land \ldots \land b_m \) logically follows from \(KB \) (from definition of \(\land \))
 - \(g \leftarrow b_1 \land \ldots \land b_m \) logically follows from \(KB \) since it is in \(KB \)
 - Using definition of \(\leftarrow \), can show that \(g \) must logically follow from \(KB \)
 - Contradiction

Is it Sound?

• Does \(C \) have every ground atom that logically follows from \(KB \)?

Example:

- \(a \leftarrow b \land c \)
- \(b \leftarrow d \land e \)
- \(b \leftarrow g \land e \)
- \(c \leftarrow e \)
- \(d \)
- \(e \)

- What is the consequence set?
- Does \(C \) contain \(a, b, c \)?

- Does \(C \) contain \(g \)?
- Does \(C \) contain \(q \)?
- Does \(C \) contain \(a, b \)?
Overview

- Semantics
- Queries
- Proof Procedures
 - Bottom-up Ground Proof Procedure
 - Top-down Ground Proof Procedure
 - Procedures
 - Queries

Final Step in Completeness Proof

- Let g be atomic and $\text{KB} \models g$
- Need to make sure that $\text{KB} \vdash g$
- Since $\text{KB} \models g$, g must be in every model of KB
- So, g is in the interpretation defined by the consequence set
- Since g is atomic and it is true in the interpretation, g must be in the consequence set
- So, it is in the interpretation defined by the consequence set
- Let $\text{KB} \models g$
- Since $\text{KB} \models g$, g must be in every model of KB
- g is in the interpretation defined by the consequence set
- Since g is atomic and it is true in the interpretation, g must be in the consequence set
- So, g is in the interpretation defined by the consequence set
- g is in the consequence set
- Hence $\text{KB} \models g$

Proof that Consequence Set is a Model

- Proof by Contradiction: Let $g \in \text{KB}$ but where $I(g)$ is false
 - Since $g \in \text{KB}$, g must have the form $h \leftarrow b_1 \land \ldots \land b_m$
 - So $h \leftarrow b_1 \land \ldots \land b_m$ is false in I
 - Remember, definition of \leftarrow comes from Datalog, not I
 - So h must be false in I and $b_1 \land \ldots \land b_m$ must be true in I
 - If $b_1 \land \ldots \land b_m$ is true in I, each individually must be true in I
 - Remember, definition of \land comes from Datalog, not I
 - So, all of the b_i must be in C (due to how we defined I)
 - Since all b_i in C and $h \leftarrow b_1 \land \ldots \land b_m$ is in KB, bottom-up algorithm must have applied this rule and hence $h \in C$
 - Hence h is true in I

Final Step in Completeness Proof

- Hence $\text{KB} \models g$
- Since $\text{KB} \models g$, g must be in every model of KB
- So all of the b_i must be in C (due to how we defined I
- Remember, definition of \leftarrow comes from Datalog, not I
- So $h \leftarrow b_1 \land \ldots \land b_m$ is false in I
- Remember, definition of \land comes from Datalog, not I
- So, all of the b_i must be in C (due to how we defined I
- Since all b_i in C and $h \leftarrow b_1 \land \ldots \land b_m$ is in KB, bottom-up algorithm must have applied this rule and hence $h \in C$
- Hence h is true in I

Proof that Consequence Set is a Model

- Hence $\text{KB} \models g$
- Since $\text{KB} \models g$, g must be in every model of KB
- So all of the b_i must be in C (due to how we defined I
- Remember, definition of \leftarrow comes from Datalog, not I
- So $h \leftarrow b_1 \land \ldots \land b_m$ is false in I
- Remember, definition of \land comes from Datalog, not I
- So, all of the b_i must be in C (due to how we defined I
- Since all b_i in C and $h \leftarrow b_1 \land \ldots \land b_m$ is in KB, bottom-up algorithm must have applied this rule and hence $h \in C$
- Hence h is true in I
Example

Now for some definitions

Top-Down Ground Proof Procedure

- Alternative to bottom-up (forward-chaining)
- Top-down (backward-chaining)
 - Start with goal, work toward facts in KB

Definite Clause Resolution for Ground Case

\[
\text{yes} \leftarrow a_1 \land \ldots \land a_m
\]

\[a_i \leftarrow b_1 \land \ldots \land b_p
\]

\[
\text{yes} \leftarrow a_1 \land \ldots \land a_{i-1} \land b_1 \land \ldots \land b_p \land a_{i+1} \land \ldots \land a_m
\]
Any top-down proof can be converted to a bottom-up proof.

Any bottom-up proof can be converted to a top-down proof.

There are many other ways of doing proofs - e.g. Unit resolution - We will explore some of these later in the course.