Diagonalization Method

To prove Undecidability, we will use the diagonalization method.

Overview
Definition: A set A is countable if either it is finite or it has the same size as \mathbb{N}.

- Is the set of positive rational numbers countable?
- $\mathbb{Q} = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}$
- Can we set up a correspondence between \mathbb{N} and \mathbb{Q}?

Set up a correspondence between \mathbb{N} and \mathbb{Q}:

\mathbb{Q}: Set up a correspondence between \mathbb{N} and \mathbb{Q}:

Can we set up a correspondence between \mathbb{N} and \mathbb{Q}?

Correspondence: A set A is countable if either it is finite or it has the same size as \mathbb{N}.

Definition: A set A is countable if either it is finite or it has the same size as \mathbb{N}.

Definition: Assume we have sets A and B and a function f from A to B. We say that f is one-to-one if f is a correspondence between A and B.

Definition: We say that f is a correspondence if f is one-to-one and onto.

Definition: We say that A and B are the same size if there is a correspondence between A and B.

Definition: We say that A and B are the same size if there is a correspondence between A and B. We say that f is one-to-one if f is a correspondence between A and B.

Definition: We say that f is one-to-one if f is a correspondence between A and B.

Definition: We say that f is one-to-one if f is a correspondence between A and B.

Definition: We say that f is one-to-one if f is a correspondence between A and B.

Definition: We say that f is one-to-one if f is a correspondence between A and B.
Proof by contradiction

Set of Real Numbers is Uncountable

Definition: A real number is one that has a decimal representation.

Definition: A set of numbers is uncountable if there is no correspondence between N and R.

Definition: An infinite set that does not have a correspondence.
How many possible languages are there?

Let L be the set of languages over Σ ($L = P(\Sigma^*)$)

- How many languages are in L? i.e. How many subsets are in $P(\Sigma^*)$?

If $|X| = n$,

$|P(X)| = 2^n$

- What if $|X|$ is infinite, but countable?

Set of all infinite binary sequences \mathcal{B} is uncountable

- Can use the diagonalization method used to show \mathbb{R} is uncountable

If L be the set of languages over Σ,

• $b \in \mathcal{B}$ indicates which strings of Σ^* to include in a $A \in L$

So, uncountable number of languages

Some languages are not Turing-recognizable

- The set of all Turing machines is countable:
 - Each has an encoding as a string
 - Subset of a countable number is a countable number

- Set of all strings is countable:
 - Only finitely many strings of each length
 - Write down all strings of length 0, length 1, length 2, etc.

- Some languages are not Turing-recognizable:
 - Each has an encoding as a string
 - Subset of a countable number is a countable number

- Each has an encoding as a string
 - Subset of a countable number is a countable number
Overview

• Diagonalization

Undecidability

• Set of Turing machines is countable, set of languages are not countable, so must be some languages that a Turing machine cannot recognize

• This is pretty powerful - There are some languages that we cannot build a Turing machine that can accept (or equivalently recognize)

Another way to think about it (not in textbook)

- We haven't said what any of those languages are, but we know they exist.

- There are some languages that we cannot build a Turing machine that can accept (or equivalently recognize)

Set of Turing machines is countable, set of languages are not countable
Halting Problem is Undecidable

Proof by contradiction

We use H as a subroutine

Construct a new TM that takes $\langle M \rangle$ as input. When M accepts w:

- Because H decides whether M accepts
- Must accept if M does not accept
- Must reject if M accepts
- Assume H is decidable.

Halting Problem is Undecidable

Then we will give a language that is not Turing recognizable

Next we will show that the Halting problem is not decidable

Showed that Halting problem is Turing-recognizable

- Showed that there are some languages that are not Turing-recognizable
- Showed how to use the diagonalization method with real numbers

Introduction
Where is the Diagonalization?

- Entry \(i, j \) is \(M_i \) on \(\langle M_j \rangle \)

- Running \(H \) that simulates \(M_1 \) \(M_2 \) \(M_3 \) \(M_4 \) ...

Where all TMs as rows (countable number), all computations on TMs as columns.

- Entry \(i, j \) is \(H \) on \(\langle M_j \rangle, \langle M_j \rangle \rangle \)

Thus neither TM \(D \) nor TM \(H \) can exist.

\[
\langle D \rangle \begin{cases}
\text{reject if } D \text{ accepts } \langle D \rangle \\
\text{accept if } D \text{ does not accept } \langle D \rangle
\end{cases} = \langle D \rangle
\]

\[
\langle IV \rangle \begin{cases}
\text{reject if } IV \text{ accepts } \langle IV \rangle \\
\text{accept if } IV \text{ does not accept } \langle IV \rangle
\end{cases} = \langle IV \rangle
\]

No matter what \(D \) does, it is forced to the opposite, which is obviously a contradiction.

- \(D \) \(IV \) \(D \text{ accepts } \langle IV \rangle \) \(D \text{ does not accept } \langle IV \rangle \)
Definition: A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem: A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Continued...
Proof

Let A be Turing recognizable and co-Turing recognizable

Construct a decider for A as follows:

1. Run both M_1 and M_2 on input w in parallel.
2. If M_1 accepts, accept; if M_2 accepts, reject.

As every string w is either in A or not in A, one of M_1 or M_2 must accept w.

So if M_1 accepts, it accepts w, and if M_2 accepts, it rejects w.

Hence M is a decider.

Thus A is decidable.

Proof

Let A be decidable.

Hence there is a deterministic TM M_1 that decides A.

Construct M_2 that accepts any string that M_1 does not accept, and vice versa.

So A is Turing recognizable and co-Turing recognizable.

Hence both M_1 recognizes A and M_2 recognizes A.

Therefore, A is Turing-recognizable and co-Turing-recognizable.

Conclusion: A is Turing-recognizable and co-Turing-recognizable.

Proof:

Let A be decidable.
A Turing-Unrecognizable Language

Corollary: \(A_{TM} \) is not Turing-recognizable

- There is no Turing machine that can tell whether a certain TM will loop forever or reject on a certain input.
- So, \(A_{TM} \) is not Turing-recognizable.

Assume \(A_{TM} \) is Turing-recognizable.

Then \(A_{TM} \) is decidable.

Contradiction.

We know that \(A_{TM} \) is Turing-recognizable.

- So, \(A_{TM} \) is not Turing-recognizable.